

2

Solving the Bottom Turtle — a SPIFFE Way to Establish Trust in
Your Infrastructure via Universal Identity

by Daniel Feldman, Emily Fox, Evan Gilman, Ian Haken, Frederick Kautz,
Umair Khan, Max Lambrecht, Brandon Lum, Agustín Martínez Fayó, Eli
Nesterov, Andres Vega, Michael Wardrop. 2020.

This work is licensed under the Creative Commons Attribution 4.0
International License (CC BY 4.0).

First edition 2020

ISBN: 978-0-578-77737-5

URL: thebottomturtle.io

This book was produced using the Book Sprints methodology
(www.booksprints.net). Its content was written by the authors during
an intensive collaboration process conducted online over two weeks.

Hewlett Packard Enterprise (HPE) sponsored the BookHewlett Packard Enterprise (HPE) sponsored the Book
Sprint as a contribution to the open source community.Sprint as a contribution to the open source community.

http://creativecommons.org/licenses/by/4.0/
http://thebottomturtle.io/
http://www.booksprints.net/

3

Book Sprints Facilitation: Barbara Rühling
Copy Editors: Raewyn Whyte and Christine Davis
HTML Book Design: Manuel Vazquez
Illustrations and Cover Design: Henrik Van Leeuwen
Fonts: Work Sans designed by Wei Huang, Iosevka by Belleve Invis

Daniel Feldman is Principal Software Engineer at Hewlett Packard
Enterprise

Emily Fox is the Cloud Native Computing Foundation (CNCF) Special
Interest Group for Security (SIG-Security), Co-Chair

Evan Gilman is a Sta� Engineer at VMware

Ian Haken is Senior Security Software Engineer at Netflix

Frederick Kautz is Head of Edge Infrastructure at Doc.ai

Umair Khan is Sr. Product Marketing Manager at Hewlett Packard
Enterprise

Max Lambrecht is Senior Software Engineer at Hewlett Packard
Enterprise

Brandon Lum is Senior Software Engineer at IBM

Agustín Martínez Fayó is Principal Software Engineer at Hewlett
Packard Enterprise

Eli Nesterov is Security Engineering Manager at ByteDance

Andres Vega is Product Line Manager at VMware

Michael Wardrop is Sta� Engineer at Cohesity

Book Sprint participants

4

This book presents the SPIFFE standard for service identity, and SPIRE,
the reference implementation for SPIFFE. These projects provide a
uniform identity control plane across modern, heterogeneous
infrastructure. Both projects are open source and are part of the Cloud
Native Computing Foundation (CNCF).

As organizations grow their application architectures to make the most
of new infrastructure technologies, their security models must also
evolve. Software has grown from one monolith on one box, to dozens
or hundreds of tightly linked microservices that may be spread across
thousands of virtual machines in public clouds or private data centers.
In this new infrastructure world, SPIFFE and SPIRE help keep systems
secure.

This book strives to distill the experience from the foremost experts
on SPIFFE and SPIRE to provide a deep understanding of the identity

About the book

5

problem and how to solve it. With these projects, developers and
operators can build software using new infrastructure technologies
while allowing security teams to step back from expensive and time-
consuming manual security processes.

Access control, secrets management, and identity are all dependent on
each other. Managing secrets at scale requires e�ective access control;
implementing access control requires identity; proving identity requires
possession of a secret. Protecting one secret requires coming up with
some way to protect another secret, which then requires protecting
that secret, and so on.

This brings to mind the famous anecdote about a woman who
interrupted a philosopher’s lecture to tell him the world rested on a
turtle’s back. When the philosopher asked her what the turtle rested
on, she said: “It’s turtles all the way down!” Finding the bottom turtle,
the solid foundation on which all other security rests, is the goal of the
SPIFFE and SPIRE projects.

Zero the Turtle, depicted on the cover of this book, is that bottom
turtle. Zero represents the foundation for security in the data center
and the cloud. Zero is trustworthy and happily supports all the other
turtles.

SPIFFE and SPIRE are projects that help you find the bottom turtle for
your organization. With the tools in this book, we hope you find a
home for Zero the Turtle, too.

About Zero the Turtle

6

Table of Contents

2About the book

91. History and Motivation for SPIFFE

9Overwhelming Motivation and Need

11The Network Used to Be Friendly, so Long as We Kept to Ourselves

12Adopting Public Cloud

15Houston, We Have a Problem

16Re-imagining Access Control

232. Benefits

23For Everyone, Everywhere

24For Business Leaders

29For Service Providers and Software Vendors

31For Security Practitioners

34For Dev, Ops, and DevOps

383. General Concepts Behind Identity

38What Is an Identity?

49How Software Identity Can Be Used

50Summary

524. Introduction to SPIFFE and SPIRE concepts

52What is SPIFFE?

60What is SPIRE?

71SPIFFE/SPIRE Applied Concepts Threat Model

785. Before You Start

7

78Prepare the Humans

81Create a Plan

90Making the Change to SPIFFE and SPIRE

99Planning SPIRE Operations

1046. Designing a SPIRE Deployment

104Your Identity Naming Scheme

106SPIRE Deployment Models

113Data Store Modeling

115Managing Failures

117SPIRE in Kubernetes

120SPIRE Performance Considerations

121Attestor Plugins

123Management of Registration Entries

125Factoring Security Considerations and Threat Modeling

1337. Integrating with Others

133Enabling Software to Use SVIDs

137Using SVIDs with Software That Is Not SPIFFE-aware

139Ideas for What You Can Build on Top of SPIFFE

142Ideas to Integrate SPIFFE for Users

1468. Using SPIFFE Identities to Inform Authorization

146Building Authorization on Top of SPIFFE

147Authentication Vs Authorization (AuthN Vs AuthZ)

147Authorization Types

149Designing SPIFFE ID Schemes for Authorization

149A Word of Warning

8

153Authorization Examples with HashiCorp Vault

158Summary

1599. Comparing SPIFFE to Other Security Technologies

159Introduction

160Web Public Key Infrastructure

161Active Directory (AD) and Kerberos

162OAuth and OpenID Connect (OIDC)

164Secrets Managers

165Service Meshes

166Overlay Networks

16810. Practitioners’ Stories

168
Uber: Securing Next-gen and Legacy Infrastructure Alike with Cryptographic
Identity

170Pinterest: Overcoming the Identity Crisis with SPIFFE

172ByteDance: Providing Dial Tone Authentication for Web-scale Services

174Anthem: Securing Cloud Native Healthcare Applications with SPIFFE

177Square: Extending Trust to the Cloud

179Glossary

190Notes

192Epilogue

9

We haven't arrived where we are today without first experiencing some
growing pains.

When the internet first became widely available in 1981, it had just 213
di�erent servers, and security was hardly even an afterthought (see:
https://tools.ietf.org/html/rfc1296). As the number of interconnected
computers increased, security remained a weakness: easily exploited
vulnerabilities lead to mass attacks such as the Morris Worm (see:
https://spaf.cerias.purdue.edu/tech-reps/823.pdf), which took over most
Unix servers on the internet in 1988, or the Slammer worm (see:
https://www.caida.org/publications/papers/2003/sapphire/sapphire.html), which
spread among hundreds of thousands of Windows servers in 2003.

As the decades have passed, conventional perimeter defense patterns
of yesteryear are not well suited to the evolving computing
architectures and boundaries of modern technology. Point solutions
and technologies have stacked one on to another to cover growing
cracks where underlying network security concepts have failed to
follow modernization trends.

1. History and
Motivation for SPIFFE

This chapter contextualizes the motivation for SPIFFE and how it
came to be.

Overwhelming Motivation and Need

https://tools.ietf.org/html/rfc1296
https://spaf.cerias.purdue.edu/tech-reps/823.pdf
https://www.caida.org/publications/papers/2003/sapphire/sapphire.html

10

So why is the perimeter pattern so prevalent and what do we need to
do to address the shortcomings?

Over the years, we’ve observed three considerable trends that highlight
conventional perimeter patterns as inhibitors to the future of
networking.

Software no longer runs on individual servers controlled by the
organization. Since 2015, new software has typically been built as a
collection of microservices 1 that can be individually scaled out or
moved to cloud hosting providers. If you can't draw a precise line
around the services that need to be secured, it's impossible to
build a wall around them.

•

You can’t trust everything, even the software in the company.
Once, we thought software vulnerabilities were like flies that we
could swat individually; now they seem more like a swarm of bees.
On average, the National Vulnerability Database reports more than
15,000 new software vulnerabilities (see:
https://nvd.nist.gov/vuln/search/statistics) per year. If you write or
buy a piece of software, it will probably have some vulnerabilities
at some point.

•

You also can’t trust people, they make mistakes and get upset,
plus they have full access to internal services. First, tens of
thousands of successful attacks annually are based on phishing
(see: https://www.comparitech.com/blog/vpn-privacy/phishing-statistics-
facts/) or stealing valid employee credentials. Second, with the
advent of cloud applications and mobile workforces, employees
may legitimately access resources from many di�erent networks.
Building a wall no longer makes sense when people constantly
have to cross back and forth over that wall just to do their jobs.

•

https://nvd.nist.gov/vuln/search/statistics
https://www.comparitech.com/blog/vpn-privacy/phishing-statistics-facts/

11

As you can see, perimeter security is no longer a realistic solution for
today’s organizations. When perimeter security is strictly enforced, it
holds organizations back from using microservices and the cloud;
when it is lax, it allows intruders in. In 2004, the Jericho Forum
recognized the need for a successor to perimeter security. Ten years
later in 2014, Google published a case study about the BeyondCorp
security architecture (see: https://research.google/pubs/pub43231/).
However, neither reached widespread adoption.

The original internet use case was focused on academia with the
intent to share information, not prevent access. As other organizations
began using networked computer systems for business-sensitive use
cases, they relied heavily on physical perimeters and physical
attestations for assurances that the individuals accessing the network
were authorized to do so. The concept of a trusted insider threat did
not yet exist. As networks evolved from academic to business-oriented
use cases and software evolved from monoliths to microservices,
security became a barrier to growth.

The Network Used to Be Friendly,
so Long as We Kept to Ourselves

https://research.google/pubs/pub43231/

12

Fig. 1.1: Evolution of networks from the confines of the university campus to the
global network of networks.

Initially, conventional methods of protecting physical access to
computers with walls and guards were emulated through firewalls,
network segmentation, private address space, and ACLs. This made
sense at the time, especially when considering the limited number of
points needing control.

With the proliferation of networks, and increased access points for
users and business partners, physical identity verification (common
with walls and guards), became virtualized through securely exchanging
and managing keys, credentials, and tokens, all of which become
increasingly problematic as technology and needs evolved.

The migration from conventional on-premise and data center
operations to a public cloud, amplified existing problems of yesteryear.

With the new freedom to create computing resources in the cloud, the
development teams and operations teams within organizations began

Adopting Public Cloud

13

to collaborate more closely and form new teams around the concept
of DevOps focused on automated deployment and management of
software. The rapidly evolving dynamic environment of the public
cloud-enabled teams to deploy far more frequently — changing from
one deployment every few months, to many per day. The ability to
provision and deprovision resources on-demand enabled the high-
velocity creation of suites of specialized, focused, and independently
deployable services with a smaller scope of responsibility, colloquially
referred to as microservices. This, in turn, increased the need for
identifying and accessing services across deployment clusters.

This highly dynamic and elastic environment broke accepted perimeter
security concepts, requiring better service level interaction that was
agnostic of the underlying network. Conventional boundary
enforcement used IPs and ports for authentication, authorization, and
auditability, which under cloud computing paradigms no longer cleanly
mapped to workloads.

Patterns spurred on by public cloud engagement, such as API gateways
or managed load balancers for multi-service workloads, underscored
the need for identities not dependent on network topology or path.
Protecting the integrity of these service-to-service communications
became more important, particularly with teams needing uniformity
across workloads.

14

Fig. 1.2: As an organization’s networks increase in complexity, adding cloud, SaaS,
and mobile workers, building and maintaining perimeter security becomes
increasingly unsustainable.

15

As organizations adopt new technologies, such as containers,
microservices, cloud computing, and serverless functions, one trend is
clear: there are a larger number of smaller pieces of software. This
both increases the number of potential vulnerabilities that an attacker
can exploit, and also makes managing perimeter defenses increasingly
impractical.

The push to do more, faster, means increasingly more components are
deployed across automated infrastructure, often sacrificing safety and
security. Bypassing manual processes such as firewall rule tickets or
security group changes are not unheard of. In this new, modern world,
network-oriented access controls become rapidly out-of-date and
require constant maintenance, regardless of the deployment
environment.

Fig. 1.3: Infrastructure environments and related operation demands are
increasingly complex with the proliferation of new technology innovations.

Houston, We Have a Problem

16

Management of these rules and exceptions can be automated,
however, they need to happen expediently, which can be challenging in
larger infrastructures. Further, network topology, such as Network
Address Translation (NAT), can make this di�cult and leaky. As
infrastructure becomes larger and more dynamic, human-in-the-loop
systems simply won’t scale. After all, nobody wants to pay for a team
of people to play with firewall rules all day who are still unable to
keep up.

Reliance on location-specific details such as server names, DNS
names, network interface details has several shortcomings in a world
of dynamically scheduled and elastically scaled applications. While
there is prevalent usage of networking constructs, the model is an
ine�ective analog of software identity. Moving towards the application
layer, the use of conventional username and password combinations or
other hard-coded credentials confers a degree of identity but deals
more with authorization than authentication.

Integrating security and introducing feedback earlier in software
development lifecycles enables developers more operational control
over the mechanisms by which their workloads can be identified and
exchange information. With this change, authorization policy decisions
may be delegated to individual service or product owners who are best
suited to make decisions relevant to the component in question.

The ever-expanding list of problems experienced by organizations
before public cloud adoption, and painfully forthcoming as a result of
this adoption, pushed the concept that conventional perimeters are
insu�cient and better solutions need to exist. Ultimately,

Re-imagining Access Control

17

deperimeterization meant that organizations needed to figure out how
to identify their software and enable service-to-service access control.

Shared secrets such as passwords and API keys provide a simple
option for access control in distributed systems. But this solution
brings many problems with it. Passwords and API keys can easily be
compromised (try searching GitHub for a phrase such as
“client_secret” and see what happens). In large organizations, secrets
can be hard to rotate in response to a compromise, since every service
needs to be aware of the change in a coordinated fashion (and missing
a service could cause an outage).

Tools and secrets repositories such as HashiCorp Vault have been
developed to help mitigate the di�culties of secrets management and
life cycles. And while many other tools also exist that try to address
this problem, they tend to o�er an even more limited solution with
mediocre results (see Secrets at Scale: Automated Bootstrapping of
Secrets & Identity in the Cloud (see: https://www.youtube.com/watch?
v%3D15H5uCj1hlE)). With all of these options, we ultimately return to the
same problem; how should workloads get access to this secret
repository? Some API key, password, or other secret is still needed.

All these solutions end up with a “turtles all the way down” problem.2

Secrets as a Solution

Enabling access control to a resource such as a database or
service requires a secret such as an API key or password

•

That key or password needs to be protected, so you could protect
it, e.g. with encryption. But then you still need to worry about a
secret decryption key

•

https://www.youtube.com/watch?v%3D15H5uCj1hlE

18

To break this loop, we need to find a bottom turtle, that is, some
secret that provides access to the rest of the secrets we need for
authentication and access control. One option is to manually provision
secrets on services when they’re deployed. However, this does not
scale in highly dynamic ecosystems. As organizations have moved to
cloud computing with rapid deployment pipelines and automatically
scaled resources, it becomes infeasible to manually provision secrets
as new compute units are created. And when a secret is compromised,
invalidating the old credential can pose a risk of bringing down the
entire system.

Embedding a secret in the application so that it doesn’t need to be
manually provisioned has even worse security properties. Secrets
embedded in source code have a habit of showing up in public
repositories (did you try that GitHub search I suggested?). While the
secret could be embedded into machine images at build time, those
images can still end up being accidentally pushed to a public image
repository or extracted from the internal image repository as a second
step in a kill chain.

We want a solution that does not include long-lived secrets (which can
be easily compromised and are hard to rotate) and does not require
manual provisioning of secrets to workloads. To achieve this, either in
hardware or the cloud provider, there must be a root of trust, upon
which an automated solution centered around software (workload)
identity is built. This identity then forms the foundation for all
interactions requiring authentication and authorization. To avoid

That decryption key could be put into a secrets repository, but
then you still need some credential like a password or API key to
access the secrets repository

•

Ultimately, protecting access to one secret results in a new secret
you need to protect

•

19

creating another bottom turtle, the workload needs to be able to
obtain this identity without a secret or some other credential.

Fig. 1.4: No longer 'Turtles all the way down' with a sound identity 'bedrock'.

Multiple endeavors to solve the software identity problem have been
pursued since 2010. Google’s Low Overhead Authentication Service
(LOAS), later titled Application Layer Transport Security (ALTS) (see:
https://cloud.google.com/security/encryption-in-transit/application-layer-
transport-security/), established a new identity format and wire

Steps toward the future

https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/

20

protocol for receiving software identity from the runtime environment
and applying it to all network communication. It has been referred to
as dial tone security.

In another example, Netflix’s internally developed solution (codenamed
Metatron (see:
https://www.usenix.org/sites/default/files/conference/protected-
files/enigma_haken_slides.pdf) establishes software identity on an
instance-by-instance basis by leveraging cloud APIs to attest the
machine image running on instances and CI/CD integration to produce
cryptographic bindings between machine images and code identity.
This software identity takes the form of X.509 certificates to perform
mutual authentication of service-to-service communication, including
access to the secrets service developed as part of this solution which
enables secrets management on top of this foundation.

Several other e�orts in the industry, including from companies such as
Facebook (see: https://engineering.fb.com/security/service-encryption/),
prove the need for a system like this and underscore the di�culty of
implementation.

The establishment of principles to be encoded in a framework was
needed before a generalized solution could exist. Reflecting upon
exposure to various technologies in past jobs that made engineering
teams lives easier, k8s founding engineer Joe Beda, embarked on a call
to arms in 2016 to create a solution for production identity as a
purpose-built solution aimed to solve the problem in a common way
that could be leveraged across many di�erent types of systems over
intermediary solutions of doing PKI the hard way. This massive
collaborative e�ort between companies to develop a new standard for
service identity based on PKI was the beginning of SPIFFE.

The vision of a Secure Production Identity Framework For
Everyone (SPIFFE)

https://www.usenix.org/sites/default/files/conference/protected-files/enigma_haken_slides.pdf
https://engineering.fb.com/security/service-encryption/

21

Beda’s paper was presented at GlueCon in 2016 (see:
https://engineering.fb.com/security/service-encryption/) and showcased a
hard problem with these parameters:

Following the introduction of the SPIFFE concept, a meeting occurred
at the Netflix campus with experts in service identity to discuss the
ultimate shape and viability of the original SPIFFE proposal. Many
members had implemented, continued to improve upon, and re-solve
workload identity, highlighting an opportunity for community
collaboration. Members at the meeting desired to obtain
interoperability among each other and with others. These experts
realized they had implemented similar solutions to solve the same
problem, and could work together to build a common standard.

The initial goals of solving the workload identity problem were to
establish an open specification and corresponding production
implementation. The framework needed to provide interoperability
between di�erent implementations and o�-the-shelf software, at its
core establishing a root of trust in an untrusted environment,
exorcising implicit trust. And finally, moving away from network-centric
identity to achieve flexibility and better scaling properties.

solve secret zero by leveraging kernel-based introspection to
obtain information about the caller without the caller having to
present a credential,

•

use X.509 since most software is already compatible, and•
e�ectively divorcing the concept of identity from network locators.•

https://engineering.fb.com/security/service-encryption/

22

Fig. 1.5: Where it all began: the 2016 meeting at Netflix where security experts
started to sketch out the concepts for SPIFFE.

23

SPIFFE and SPIRE aim to strengthen the identification of software
components in a common way that can be leveraged across
distributed systems by anyone, anywhere. The modern infrastructure
technology landscape is convoluted. Environments grow increasingly
disparate with mixes of hardware and software investments.
Maintaining software security by standardizing how systems define,
attest, and maintain software identity, regardless of where systems are
deployed or who deploys those systems, confers many benefits.

For business leaders focused on improving business expediency and
returns, SPIFFE and SPIRE can significantly reduce costs associated
with the overhead of managing and issuing cryptographic identity
documents (e.g. X.509 certificates), and accelerate development and
deployment by removing the need for developers to understand the
identity and authentication technologies required to secure service-to-
service communication.

For service providers and software vendors focused on delivering a
robust, secure, and interoperable product, SPIFFE and SPIRE solve a
critical identity problem prevalent when interconnecting many

2. Benefits

This chapter explains the benefits of deploying SPIFFE and SPIRE
across your infrastructure, from a business and technology
perspective.

For Everyone, Everywhere

24

solutions into a final product. For example, SPIFFE can be used as the
basis for a product’s TLS features and user
management/authentication features in one fell swoop. In another
example, SPIFFE can replace the need for managing and issuing API
tokens for platform access, bringing rotation for free and eliminating
the customer burden of storing and managing access to said tokens.

For security practitioners looking to not only enhance the security of
data in transit but also achieve regulatory compliance and solve their
root of trust problem, SPIFFE and SPIRE work to deliver mutual
authentication across untrusted environments without the need to
exchange secrets. Security and administrative boundaries can be easily
delineated, and communication can occur across those boundaries,
when and where policy allows.

For developers, operators, and DevOps practitioners in need of identity
management abstraction, and interoperability with modern, cloud
native services and solutions for their workloads and applications,
SPIFFE and SPIRE are compatible with numerous other tools
throughout the software development lifecycle to deliver reliable
products. Developers can get on with their day, going straight to
business logic without worrying about nuisances such as certificates,
private keys, and JavaScript Web Tokens (JWTs).

In today's business environment, rapidly delivering innovative customer
experiences through di�erentiated applications and services is
necessary for competitive advantage. As a result, organizations witness
a change in how applications and services are being architected, built,
and deployed. New technologies such as cloud and containers help
organizations release faster, at scale. Services need to be built at high

For Business Leaders

Modern organizations have modern needs

25

velocity and deployed on a vast plethora of platforms. As development
accelerates, these systems are becoming increasingly interdependent
and interconnected to deliver a consistent customer experience.

Organizations may be inhibited in achieving high velocity and gaining
market share or mission assurance for such major reasons as
compliance, the pool of expertise, and interoperability challenges
between teams/organizations and within existing solutions.

The impact of interoperability

As systems evolve, the need for interoperability grows indefinitely.
Disjointed teams build services that are siloed and unaware of each
other, even though they need to eventually be conscious of one
another. Acquisitions occur in which new or never-before-seen
systems need to be folded into existing systems. Business
relationships are established, demanding new communication channels
with services that may reside deep in the stack. All of these challenges
are centered around the problem of “how do I connect all of these
services together, each with its own unique properties and history, in a
secure way?”.

Technology integration as a result of organizational convergence can be
a challenge when di�erent technology stacks must come together and
interoperate. Aligning on a common, industry-accepted standard for
system-to-system communication with identity and authentication,
simplifies the technical aspects of full interoperability and integration
across multiple stacks.

SPIFFE brings a shared understanding of what constitutes software
identity. By further leveraging SPIFFE Federation, components in
disparate systems in di�erent organizations or teams can establish
trust to communicate securely without the added overhead of
constructs such as VPN tunnels, one-o� certificates, or shared
credentials for use between such systems.

26

Compliance and auditability

Auditability within the SPIRE implementation provides assurances that
identities performing actions cannot be repudiated as a result of
enforcing mutual authentication within the environment. Further, the
identity documents issued by SPIFFE/SPIRE enable the pervasive use
of mutually-authenticated TLS, e�ectively solving one of the most
di�cult challenges associated with projects of this nature. Additional
benefits to mutually authenticated TLS include native encryption of
data in transit between services, not only protecting the integrity of
the communications but also assuring the confidentiality of sensitive
or proprietary data.

Fig. 2.1: Meeting compliance and regulatory objectives seamlessly using SPIFFE.

Another common compliance requirement is brought on by the
General Data Protection Regulation (GDPR) — specifically requiring that
European Union (EU) data reside wholly within the EU, not transiting or
being processed by entities outside its jurisdiction. With multiple roots

27

of trust, global organizations can ensure that EU entities communicate
only with other EU entities.

Pool of expertise

Ensuring that development, security, and operations teams are
equipped with the right knowledge and experience to handle security-
sensitive systems appropriately, remains a significant challenge.
Enterprises need to be able to hire developers with standards-based
skill sets to decrease onboarding time and improve time-to-market
with reduced risk.

Solving the problem of delivering cryptographic identity to every
software instance in an automated fashion, and enabling credential
rotation from the root down, poses a major challenge. For security and
operations teams, the expertise required to implement such systems is
few and far between. Sustaining day-to-day operations without relying
on community or industry knowledge exacerbates the problem, leading
to outages and finger-pointing.

Developers cannot reasonably be expected to know or gain subject
matter expertise in practical matters of security, especially as it applies
to service identity within organizational environments. Further, the pool
of security practitioners with the depth of knowledge in development,
operations, and workload execution, is minimal. Leveraging an open
standard and open specification to solve critical identity problems
allows for individuals without personal experience to expand
knowledge through a well-supported and growing community of
SPIFFE/SPIRE end-users and practitioners.

Savings

Adoption of SPIFFE/SPIRE enables cost savings on many fronts,
including reduced cloud/platform lock-in, improved developer

28

e�ciency, and reduced reliance on specialized expertise, to name a
few.

By abstracting cloud provider identity interfaces into a set of well-
defined common APIs built on open standards, SPIFFE significantly
reduces the burden of developing and maintaining cloud-aware apps.
Since SPIFFE is platform-agnostic, it can be deployed practically
anywhere. This di�erentiator saves time and money when a platform
technology change is necessary, and can even strengthen negotiation
positions with existing platform providers. Historically, identity and
access management services are the command and control of every
organization’s deployments — cloud services providers know this and
leverage this constraint as the primary lock-in mechanism to fully
integrate with their platform.

There are significant savings to be had in the area of improved
developer e�ciency as well. Two important aspects of SPIFFE/SPIRE
unlock these savings: the fully automated issuance and management
of cryptographic identity and its associated lifecycle, and the
uniformity and o�oading of authentication and service-to-service
communication encryption. By removing manual processes associated
with the former, and time spent in research and trial/error in the latter,
developers can better focus on what matters for them: the business
logic.

29

As we’ve seen historically, Fortune 50 technology organizations
employing highly skilled and specialized engineers took decades to
resolve this problem of identity. Adding SPIFFE/SPIRE to an
organization’s catalog of cloud native solutions allows you to build on
top of years of hyper-specialized security and development talent
without the corresponding cost.

With a robust community supporting deployments of a few dozen to
several hundred thousand nodes, SPIFFE/SPIRE’s experience operating
in complex, large scale environments can meet the needs of the
organization.

Reducing customer burden incurred in the course of using a product is
always the number one goal of any good product manager. It is
important to understand the practical implications of features that
seem innocuous on the surface. For example, if a database product
needs to support TLS because it is required for customer compliance,
it is simple to add a few configurables to the product and call it a day.

Boost developer productivity

Avg. time spent by developers in obtaining credentials and configuring
authentication/confidentiality protocols per application component (hours) 2

Reduction in time spent by the developer in corresponding for credentials
per application component 95%

Avg time spent by the developer in learning and implementing controls for
specific API gateways, secret stores, etc. (hours) 1

Reduction in time spent by developers in learning and implementing
controls for specific API gateways, secret stores, etc. 75%

Number of new application components developed in the year 200

Projected hours saved due to better developer productivity 530

table

For Service Providers and Software
Vendors

30

Unfortunately, this pushes some significant challenges to the
customer. Similar challenges are faced even with seemingly simple
user management. Consider the following customer pain points that
both of these common features introduce by default:

All of these questions need to be answered before these features are
viable from a customer perspective. Often, the solutions invented or
installed by the customer are operationally painful.

Who generates the certificates and passwords, and how?•
How are they securely distributed to the applications that need
them?

•

How is access to private keys and passwords restricted?•
How are these secrets stored such that they don’t leak into
backups?

•

What happens when a certificate expires, or a password must be
changed? Is the process disruptive?

•

How many of these tasks necessarily involve a human operator?•

31

These customer burdens are very real. Some organizations have entire
teams dedicated to managing these burdens. By simply supporting
SPIFFE, all of the above concerns are alleviated. The product can snap
into existing infrastructure, and grow TLS support for free. Further,
client (user) identity conferred by SPIFFE can replace the need for
directly managing user credentials (e.g. passwords).

Accessing a service or platform (e.g. a SaaS service) involves similar
challenges. Ultimately, these challenges boil down to the inherent
di�culty presented by credential management, particularly so when
the credential is a shared secret.

Consider API tokens for a moment — the use of API tokens is
prevalent among SaaS providers to authenticate non-human API
callers. They are e�ectively passwords, and each one must be carefully
managed by the customer. All of the challenges listed above apply
here. Platforms that support SPIFFE authentication greatly alleviate
customer burdens associated with accessing the platform, solving
storage, issuance, and life cycle problems all at once. Leveraging
SPIFFE, the problem is reduced to simply granting a given workload
the desired privileges.

Technical innovation cannot be an inhibitor to secure products.
Development, distribution, and deployment tools need seamless
integration with security products and methods that do not impact the
autonomy of software development or create a burden on the
organization’s success. Organizations need software products that are
easy to use and add additional security to existing tools.

Platform access management

For Security Practitioners

32

SPIRE is not the end-all solution to every security problem. It does not
negate the need for robust security practices and defense in depth or
layered security. However, leveraging SPIFFE/SPIRE to provide a root of
trust across untrusted networks allows organizations to take a
meaningful step forward down the path to a zero trust architecture
(see: https://csrc.nist.gov/publications/detail/sp/800-207/final) as part of
a comprehensive security strategy.

SPIRE can help mitigate several major OWASP (see:
https://owasp.org/www-project-top-ten/) threats. To reduce the likelihood of
a breach through credential compromise, SPIRE provides a strongly
attested identity for authentication across the entire infrastructure.
The automation that keeps the promise of assurance makes the
platform secure-by-default, removing an additional configuration
burden by development teams.

For organizations looking to solve the root of trust and identity issues
within their products or services, SPIFFE/SPIRE also addresses the
customer’s security needs by enabling pervasive mutual TLS
authentication to securely deliver communications between workloads
no matter where they are deployed. Further, as with every open source
product, the community and contributors behind the code base
provide multiple sets of eyes to scrutinize code pre- and post-merge.
This implementation of ‘Linus’ Law’ (see:
https://en.wikipedia.org/wiki/Linus%27s_law) goes beyond the four
eyes principle to ensure any potential bugs or known security issues
are caught before making their way to distribution.

SPIRE’s APIs provide a mechanism for security teams to enforce
consistent authentication policies across platforms and business units
in an easy-to-use manner. When coupled with a well-defined policy,

Secure-by-default

Policy enforcement

https://csrc.nist.gov/publications/detail/sp/800-207/final
https://owasp.org/www-project-top-ten/
https://en.wikipedia.org/wiki/Linus%27s_law

33

interactions between services can be kept to a minimum, ensuring only
authorized workloads may communicate with each other. This
constrains the potential attack surface by a malicious entity and can
trigger alerts in the policy engine’s default deny rule.

SPIRE leverages a powerful multi-factor attestation engine that runs in
real-time to determine, with certainty, the issuance of cryptographic
identities. It also automatically issues, distributes, and renews short-
life credentials to ensure that the organization’s identity architecture
accurately reflects the operational state of the workloads.

Adopting a zero trust model in the architecture reduces the blast
radius if a breach were to occur. Mutual authentication and trust
revocation can block a compromised front end application server from
exfiltrating data from unrelated databases that may be available on the
network or within a cluster. While not likely to occur in organizations
with tight network security, SPIFFE/SPIRE certainly adds additional
defense layers to mitigate vulnerabilities and exposure points from
misconfigured firewalls or unchanged default logins. It also shifts
security decisions away from IP addresses and port numbers (which
can be manipulated in undetectable ways) and towards cryptographic
identifiers that enjoy integrity protections.

Zero trust

34

SPIRE can help improve the observability of the infrastructure. Critical
SPIRE events such as identity requests and issuances are loggable
events that help provide a more complete view of the infrastructure.
SPIRE will also generate events for a variety of actions, including
identity registrations, deregistrations, attestation attempts, identity
issuance, and rotations. These events can then be aggregated and sent
to the organization's security information and event management
(SIEM) solution for single-pane-of-glass monitoring.

Even though you can quantify improvements to the developer or even
operational productivity by adopting and supporting SPIFFE/SPIRE
regardless of environment, ultimately, it relieves much of the toil
teams experience by reintroducing focus, flow, and joy in their daily
work.

Security cannot be an inhibitor to technical innovation. Security tools
and controls need frictionless integration with modern products and
methods that do not impact the autonomy of development or create a
burden on the operations team.

SPIFFE and SPIRE provide a uniform service identity control plane that
is available through a consistent API across platforms and domains, so
the team can focus on delivering applications and products without
concern or special configurations for the destination. Each developer
can leverage this API to securely and easily authenticate across
platforms and domains.

Developers can also request and receive an identity that may then be
used to build additional application-specific controls for the supplied

Logging and monitoring

For Dev, Ops, and DevOps

Focus

35

identity, while operators and DevOps teams can manage and scale
identities in an automated manner, simultaneously implementing and
executing policies that consume these identities. Further, teams can
use the OIDC Federation to correlate SPIFFE identities with various
cloud authentication systems, such as AWS IAM, reducing the need for
di�cult-to-manage secrets.

Every credential ever generated su�ers from the same problem: at
some point, it will have to be changed or revoked. When the time
comes, the process is often manual and painful — and just as with
deploys, the less frequently it occurs the more painful it becomes.
Unfamiliarity with the process and outages induced by lack of
timeliness or unwieldy update procedures are par for the course.

When rotation is required, it frequently demands expensive context
switches for operators and developers alike. SPIFFE/SPIRE addresses
this by treating rotation as a critical central function. It is fully
automated and occurs regularly without human intervention. The
frequency of rotation is an operator choice, and trade-o�s are
involved; however, it is not uncommon for SPIFFE credentials to rotate
hourly. This frequent and automated rotation approach minimizes
operator and developer interruptions related to credential lifecycle
management.

Flow

36

It is important to note that it is not just rotation that is automated.
The initial issuance of the credential (most commonly in the form of
an X.509 certificate) is also fully automated. This works to streamline
developer flow, taking the task of generating or procuring the
credential out of the checklist for spinning up a new service.

Developers and integrators no longer need to be frustrated by the lack
of interoperability in the organization’s secure identity and
authentication solution. SPIRE provides a plugin model that allows
developers and integrators to extend SPIRE to suit their needs. This
capability is particularly important if the organization requires a set of
proprietary APIs to generate SPIRE's keys, or if the intermediate signing
keys of SPIRE should live in a specific proprietary Key Management
Service (KMS). Developers also need not worry about developing
custom wrappers for new workloads to be brought online because the
organization is adhering to an open specification.

Many teams are afraid to change or remove firewall rules that permit
tra�c between networks because of the potential adverse e�ect of
critical systems availability. Operators may scope identities and their
associated policies to applications instead of globally. Locally scoped
identities and policies give operators the confidence to enact changes
without fear of downstream impact.

Without a robust software identity system, service-to-service access
management is often accomplished through the use of network-level
controls (e.g. IP/Port-based policy). Unfortunately, this approach
generates a significant amount of operational toil associated with
managing network access control lists (or ACLs). As elastic
infrastructure comes up and down, and network topologies change,
these ACLs need constant care and feeding. They can even get in the

Interoperability

Improvement of daily work

37

way of turning on new infrastructure, as the existing systems now
need to be taught about the existence of the new pieces.

SPIFFE and SPIRE work to reduce this toil, as the concept of software
identity is relatively stable when compared with the arrangement of
hosts and workloads on a network. Furthermore, they pave the way for
delegating authorization decisions to the service owners themselves,
who are ultimately in the best position to make such decisions. For
example, service owners that want to grant access to a new consumer
need not be concerned with network-level details for the creation of
the access policy — they may simply declare the name of the service
they wish to grant access to, and carry on.

SPIFFE/SPIRE also works to improve observability, monitoring, and
ultimately Service Level Objectives (SLO) adherence. By normalizing
software identity across many di�erent types of systems (not
necessarily just containerized or cloud native), and providing an audit
trail of identity issuance and usage, SPIFFE/SPIRE can greatly improve
situational awareness before, during, and after an incident occurs.
More mature teams may even find that it improves their ability to
predict problems before they impact service availability.

38

For humans, identity is complex. Humans are unique individuals who
can’t be cloned or have their minds replaced with alternate code, and
they may carry multiple social identities over the course of their lives.
Software services are just as complex.

A single program might scale out to thousands of nodes, or change its
code many times a day as a build system pushes new updates. In such
a rapidly changing environment, an identity must represent the specific
logical purpose of the service (e.g. a customer billing database) and an
association with established authority or root of trust (e.g. my-
company.example.org or the issuing authority for my production
workloads).

Once identities are issued for all the services in an organization, they
can be used for authentication: proving that a service is what it says it
is. Once services can authenticate to each other, they can use
identities for authorization, or control who can access those services,

3. General Concepts
Behind Identity

This chapter explains what an identity is, as well as the basics of
distributing, managing, and using identities. These are concepts
you will need to know in order to understand how SPIFFE and
SPIRE work.

What Is an Identity?

39

and confidentiality, or keeping the data they transmit to each other
secret. While SPIFFE does not itself include authentication,
authorization, or confidentiality, the identities it issues can be used for
all of them.

Designating service identities for an organization is similar to designing
any other part of the organization’s infrastructure: it depends
intimately on the organization’s needs. When a service scales out,
changes code, or moves locations, it may be logical for it to keep the
same identity.

Now that we’ve defined identity, how do we represent that identity?
How do we know that when a piece of software (or workload) claims
its identity, that the claim is trustworthy? To start exploring these
questions, we must first discuss how an identity is established.

Identity for humans

Allow us to explain these concepts with something we all share: our
real-world identities.

Identity documents

If a name is a person’s identity, then the proof of that identity is an
identity document. A passport is a document that allows a person to
prove their identity, so it is an Identity Document. Like passports from
di�erent countries, di�erent types of software identity documents can
look di�erent and don’t always contain the same information. But to
be useful, they all usually at least contain some common information
such as the user’s name.

What is the di�erence between a passport and a napkin with your
name scribbled on it?

Trustworthy identity

40

The most significant di�erence is the source. With passports, we trust
that the Issuing Authority has verified your identity, and we have the
ability to verify that the passport was issued by that trusted authority
(validation). With that napkin, we don’t know where it came from and
have no way to validate that it comes from the restaurant you say it
does. We also can’t trust that the restaurant wrote the correct name
on the napkin, or verified the accuracy of your name when you
communicated it.

Trusting an issuing authority

We trust a passport because we implicitly trust an authority that
issues them. We trust the process by which they issue these identity
documents: they have records and controls to ensure that they are
issuing an identity only to the correct individual. We trust the
governance of this process, so we know that the passports that are
issued by the authority are a faithful representation of someone’s
identity.

Verifying the identity document

Given this, how can we di�erentiate between a real passport and a
fake one? This is where verification comes in. Organizations need a way
to determine whether the identity document is issued by the authority
we trust. This is typically done through watermarks that are hard to
replicate but easy to verify.

Authenticating the person presenting the identity document

Passports codify several pieces of information about the person that
the identity represents. First, they include a picture of the person that
can be used to verify that the presenter is the same person visible on
the passport. They may also include other physical attributes of the
person — their height, weight, and eye color, for example.

41

All of these attributes can be used to authenticate a person who
presents a passport.

To recap, passports are our identity documents, and we use them to
identify each other because we trust the Issuing Authority, and have a
way to verify that the document originates from that authority. Finally,
we can authenticate the person presenting the passport by cross-
referencing the contents of the passport with the person holding it.

Circling back to workload identity, how do the above concepts map
onto computer systems? Instead of passports, Digital Identity
Documents are used. X.509 certificates, signed JSON Web Tokens
(JWTs), and Kerberos tickets, are examples of digital identity
documents. Digital identity documents can be verified using
cryptographic techniques. Then, the computer system can be
authenticated, much like a person with a passport.

One of the most useful and prevalent techniques to do this is Public
Key Infrastructure (PKI). A PKI is defined as a set of roles, policies,
hardware, software, and procedures needed to create, manage,
distribute, use, store and revoke digital certificates and manage public-
key encryption. With PKI, digital identity documents can be validated
locally, o�ine, against a small, static set of root trust bundles.

A brief overview of X.509

When the International Telecommunication Union Telecommunication
Standardization Sector (ITU-T (see: https://www.itu.int/en/ITU-T/about/)
initially released the X.509 standard for PKI in 1988, it was
extraordinarily ambitious for its time and is still considered to be so.
The standard originally envisioned giving certificates to humans,
servers, and other devices alike, forming an enormous globally
integrated secure communication system.3 While X.509 has never

Identity in the Digital World: Cryptographic Identities

https://www.itu.int/en/ITU-T/about/

42

reached its originally intended scope, it is the expected foundation for
nearly every secure communications protocol.4

How X.509 works with a single authority

Bob’s computer needs a certificate. He generates a random private
key, and also a certificate signing request (or CSR), which includes
basic information on his computer, such as its name; we’ll call it
bobsbox. A CSR is a little bit like a passport application.

1.

Bob sends his CSR to a certificate authority (or CA). The CA
validates that Bob is really Bob. The exact way this validation
happens can vary — it may involve a human checking Bob’s
paperwork, or an automatic check.

2.

The CA then creates a certificate by encoding the information
presented in the CSR, and adding a digital signature, which serves
to assert that the CA has verified the information contained within
to be true and correct. It sends the certificate back to Bob.

3.

When Bob wants to establish secure communications with Alice,
his computer can present his certificate, and cryptographically
demonstrate that it has Bob’s private key (without ever actually
sharing the contents of that private key with anyone).

4.

Alice’s computer can check that Bob’s certificate is really Bob’s
certificate by checking that the Certificate Authority signed it. She
trusts that the Certificate Authority properly checked Bob’s
identity before signing the certificate.

5.

43

Fig. 3.1: Illustration of Bob requesting a certificate from the Certificate Authority,
and using it to prove his identity to Alice.

Fig. 3.2: PKI 'in a nutshell'

44

Fig. 3.3: Illustration of intermediate certificate authorities.

X.509 with intermediate certificate authorities

In many cases, the CA that has signed a given certificate is not well-
known. Instead, the CA has its own key and certificate, and that
certificate is signed by another CA. By signing this CA certificate, the
parent CA is certifying that the lower-order CA is authorized to issue
digital identities. This authorization of lower-order CAs by higher-order
CAs is known as delegation.

Delegation can occur repeatedly, with lower-order CAs further
delegating their power, forming an arbitrarily tall tree of certificate
authorities. The highest-order CA is known as the root CA and must
have a well-known certificate. Every other CA in the chain is known as
an intermediate CA. The benefit of this approach is that fewer keys
need to be well-known, allowing the list to change less frequently.

45

This leads to a key weakness of X.509: any CA can sign any certificate,
with no restrictions. If a hacker decides to start her own intermediate
CA and can get approval from any one existing intermediate CA, then
she can e�ectively issue any identity she wants. It is vital that each
well-known CA is completely trustworthy, and that each intermediate
CA they delegate to is also completely trustworthy.5

Certificate and identity lifecycle

There are several additional features in PKI that make management
and authentication of digital identities easier and more secure.
Authority delegation, identity revocation, and limited identity document
lifetimes to name a few.

Identity issuance

There is always a point at which a new identity must be issued.
Humans are born, new software services are written, and in each of
these cases, we must issue an identity where one was not present
before.

First, a service needs to request a new identity. For a human, this
might be a paper form. For software, it is an X.509 document called a
Certificate Signing Request (CSR), which is created with a
corresponding private key. The CSR is similar to a certificate, but since
it has not been signed by any Certificate Authority, no one will
recognize it as valid. The service then sends the CSR securely to the
Certificate Authority.6

Next, the Certificate Authority checks every detail of the CSR against
the service that requested the certificate. Originally, this was intended
to be a manual process: humans checking paperwork and making
decisions on an individual basis. Today, the checks and the signing
process are often completely automated. If you have used the popular

46

LetsEncrypt certificate authority, then you are familiar with a fully
automated certificate authority signing process.

Once satisfied, the Certificate Authority attaches its digital signature to
the CSR, turning it into a fully-fledged certificate. It sends the
certificate back to the service. Along with the private key that it
generated earlier, the service can securely identify itself to the world.

Certificate revocation

So, what happens if a service is compromised? What if Bob’s laptop is
hacked, or Bob leaves the company and should not have access
anymore?

This process of undoing trust is called Certificate Revocation. The
Certificate Authority maintains a file called the Certificate Revocation
List with the unique IDs of the revoked certificates and distributes a
signed copy of the file to anyone who asks.

Revocation is tricky for several reasons. First, the CRL must be hosted
and served from an endpoint somewhere, introducing challenges
around making sure that the endpoint is up and reachable. When it
isn’t… does PKI stop working? In practice, most software will fail open,
continuing to trust certificates when CRLs are unavailable, making
them e�ectively useless.

Second, CRLs can get large and unwieldy. A revoked certificate must
remain in the CRL until it expires, and certificates are generally long-
lived (on the order of years). This can lead to performance problems in
serving, downloading, and processing the lists themselves.

Several di�erent technologies have been developed to try to make
certificate revocation simpler and more reliable, such as the Online
Certificate Status Protocol (OCSP). The variety of approaches make
certificate revocation a continual challenge.7

47

Certificate expiration

Every certificate has a built-in expiration date. Expiration dates are a
vital part of the security of X.509 for several di�erent reasons: to
manage obsolescence, to limit the potential for change in the identity
indicated by the certificate, to limit the size of CRLs, and to lessen the
possibility that the key will be stolen.

Certificates have been around for a long time. When they were first
developed, many CAs used the MD2 hashing algorithm from 1989,
which was relatively quickly found to be insecure. If those certificates
were still valid, attackers could forge them.

Another important aspect of a limited certificate lifetime is that the CA
only has a single chance to validate the identity of the requester, but
this information is not guaranteed to remain correct over time. For
example, domain names frequently change ownership and are one of
the more critical pieces of information generally included in a
certificate.

If certificate revocation lists are in use, then each certificate that is
still valid has the potential to be revoked. If certificates lasted forever,
then the certificate revocation list could grow endlessly. To keep the
certificate revocation list small, certificates need to expire.

Finally, the longer a certificate is valid, the greater the risk that the
private key for its certificate or any certificate leading to the root could
be stolen.

Frequent certificate renewal

One compromise in solving the challenges posed by revocation is to
rely more heavily on expiration. If the certificate lifetime is very short
(perhaps only a few hours), then the CA can frequently re-perform any
checks that it originally made. If certificates renew frequently enough,

48

then CRLs might not even be necessary since it may be faster just to
wait for the certificate to expire.

Another cryptographic identity: JSON Web Tokens (JWT)

Another public key identity document, JSON Web Tokens (RFC7519),
also behaves as a PKI-like system. Instead of certificates, it uses a
JSON token and has a construct called JSON Web Key Set which acts
as a CA Bundle to authenticate the JSON tokens. There are important
di�erences between certificates and JWTs that are beyond the scope
of this book, but just like X.509 certificates, the authenticity of a JWT
can be verified using PKI.

Whichever kind of identity you use, some trusted authority has to
issue it. In many cases, not everyone trusts the same authorities or the
process by which they were issued. Alice’s New York State driver’s
license is a valid identification in New York, but it isn’t valid in London
because London authorities don’t trust the state government of New
York. However, Bob’s US Passport is valid in London, because the UK
authorities trust the US government authorities, and the London
authorities trust the UK authorities.

The situation is identical in the realm of Digital Identity Documents.
Alice and Bob might have certificates signed by completely unrelated
CAs, but as long as they both trust those CAs, they can authenticate

The identity lifespan trade-o�

Shorter lifespan Longer lifespan

If a document is stolen, it is valid for
a shorter time

Reduced load on certificate authorities
(humans and programs)

CRLs are shorter and maybe
unnecessary Reduced load on the network

Fewer outstanding identity
documents at a time (easier to keep
track of)

Better resiliency in case a node can’t
renew its certificate due to a network
outage

table

The trustworthiness of foreign identities

49

each other. That doesn’t mean Alice has to trust Bob, just that she can
securely identify him.

Once a piece of software has a digital identity document, it can be
used for many di�erent purposes. We’ve already discussed using
identity documents for authentication. They can also be used for
mutual TLS, authorization, observability, and metering.

Authentication

The most common use of an identity document is as a basis for
authentication. For software identities, several di�erent authentication
protocols exist that use X.509 certificates or JWTs to prove the identity
of a service to another service.

Confidentiality and integrity

Confidentiality means that attackers can’t see the contents of a
message, while integrity means that they can’t alter it in transit.
Transport Layer Security (TLS) is a widely used protocol for building
secure connections that provides authentication, confidentiality, and
message integrity on top of an untrusted network connection using
X.509 certificates.

One feature of TLS is that either side of the connection can be
authenticated using certificates. As an example, when you connect to
your bank’s web site, your web browser authenticates your bank using
an X.509 certificate presented by the bank, but your browser doesn’t
present a certificate to the bank. (You log in with a username and
password, not a certificate.)

How Software Identity Can Be Used

50

When two pieces of software are communicating, it is common for
both sides of the connection to have X.509 certificates and
authenticate each other. This is called mutually authenticated TLS.

Authorization

Once a digital identity is authenticated, it can be used for
authorizing8 access to services. Typically, each service would have an
allowlist of other services that are permitted to make requests against
it. Authorization can only occur after authentication.

Observability

Identity can also be useful for increasing observability within your
organization’s infrastructure. In large organizations, it’s surprisingly
common for old or unmaintained services to communicate in
mysterious, undocumented ways. Unique identities for each service
can solve this problem in conjunction with observability tooling. For
logging, a repudiable identity of the requester can be useful if
something goes wrong later.

Metering

In microservice architectures, a common need is to throttle requests
so that a fast microservice doesn’t overwhelm a slow one. If each
microservice has a unique identity, it can be used to manage a quota
of requests per second to solve this problem or to deny access
altogether.

Both humans and pieces of software have identities, and both can use
identity documents to prove their identities. For humans, passports are

Summary

51

a typical form of an identity document. For software, the most
common form of a digital identity document is an X.509 certificate.

Certificates are issued by Certificate Authorities. Certificate Authorities
need to take care to properly validate the people or things they are
creating certificates for, and manage the lifespan of the certificates.
After the certificate is issued, whoever uses it needs to trust the
certificate authority that issued it.

Once trusted digital identity documents are available, they have many
di�erent uses. One of the most common is to create a mutually
authenticated TLS connection, which includes authentication,
confidentiality, and integrity. Another common use is for authorization.
With authentication, confidentiality, integrity, and authorization,
connections between services are secure.

52

The Secure Production Identity Framework For Everyone (or SPIFFE) is
a set of open source standards for software identity. To achieve
interoperable software identity in an organization- and platform-
agnostic way, SPIFFE defines the interfaces and documents necessary
to obtain and validate cryptographic identity in a fully automated
fashion.

4. Introduction to
SPIFFE and SPIRE
concepts

Building upon the concepts introduced in Chapter 3, this chapter
illustrates the SPIFFE standard. It explains the components of the
SPIRE implementation and how they fit together. Finally, it
discusses the threat model and what happens if specific
components are compromised.

What is SPIFFE?

53

SPIFFE consists of five parts:

Fig. 4.1: SPIFFE parts.

SPIFFE is intended for identifying servers, services, and other non-
human entities communicating over a computer network. What these
all have in common is that the identities must be issuable

The SPIFFE ID, how a software service’s name (or identity) is
represented

•

The SPIFFE Verifiable Identity Document (SVID), a cryptographically
verifiable document used to prove a service’s identity to a peer

•

The SPIFFE Workload API, a simple node-local API that services
use to obtain their identities without the need for authentication9

•

The SPIFFE Trust Bundle, a format for representing the collection
of public keys in use by a given SPIFFE issuing authority

•

SPIFFE Federation, a simple mechanism by which SPIFFE Trust
Bundles can be shared

•

What SPIFFE isn’t

54

automatically (without a human in the loop). While it may be possible
to use SPIFFE for identifying people or other wildlife species, the
project has purposely left these use cases out of scope. No special
considerations have been other than for robots and machines.

SPIFFE delivers identity and related information 10 to services while
managing the lifecycle of this identity, but its role is limited to that of
a provider as it does not directly make use of the delivered identities.
It’s the responsibility of the service to make use of any SPIFFE
identities it receives. There are a variety of solutions for using SPIFFE
identities that enable authentication layers, such as end-to-end
encrypted communication or service-to-service authorization and
access control, however, these functions are also considered out of
scope for the SPIFFE project and SPIFFE will not solve them directly.

A SPIFFE ID is a string that functions as the unique name for a service.
It is modeled as a URI and is made up of several parts. The prefix
`spi�e://` (as the URI’s scheme), the name of the trust domain (as the
host component), and the name or identity of the specific workload (as
the path component).

A simple SPIFFE ID might just be spiffe://example.com/myservice.

Fig. 4.2: A sample SPIFFE ID, and its composition.

The SPIFFE ID

55

The first component of a SPIFFE ID is the `spi�e://` URI scheme.
Although mundane, including it is an important detail as it serves to
distinguish a SPIFFE ID apart from a URL or other type of network
locator.

The second component of a SPIFFE ID is the trust domain name
(`example.com`). In some cases, there will simply be one trust domain
for an entire organization. In other cases, it might be necessary to have
many trust domains. Trust domain semantics are covered later in this
chapter.

The final component is the name portion of the workload
itself, 11 represented by the URI path. The exact format and
composition of this part of the SPIFFE ID is site-specific. Organizations
are free to choose a naming scheme that makes the most sense for
them. For instance, one might choose a naming scheme that reflects
both the organizational location as well as the workload’s purpose,
such as:

spiffe://example.com/bizops/hr/taxrun/withholding

It is important to note that the primary purpose of a SPIFFE ID is to
represent a workload’s identity in a flexible way that is easy for both
humans and machines to consume. Caution should be exercised when
attempting to instill too much meaning in the format of a SPIFFE ID.
For example, attempting to codify attributes that are later used as
individual pieces of authorization metadata can lead to interoperability
and flexibility challenges. Instead, a separate database (see:
https://en.wiktionary.org/wiki/lookaside) is recommended.

The SPIFFE specifications introduce the concept of a trust domain.
Trust domains are used to manage administrative and security

The SPIFFE Trust Domain

https://en.wiktionary.org/wiki/lookaside

56

boundaries within and between organizations, and every SPIFFE ID has
the name of its trust domain embedded in it, as described above.
Concretely, a trust domain is a portion of the SPIFFE ID namespace
over which a specific set of public keys is considered authoritative.

Since di�erent trust domains have di�erent issuing authorities, the
compromise of one trust domain does not result in the compromise of
another. This is an important property that enables secure
communication between parties that may not fully trust each other, for
example between staging and production or between one company
and another.

The ability to validate SPIFFE identities across multiple trust domains
is known as the SPIFFE Federation, introduced later in this chapter.

The SPIFFE Verifiable Identity Document (SVID) is a cryptographically-
verifiable identity document that is used to prove a service’s identity to
a peer. SVIDs include a single SPIFFE ID and are signed by an issuing
authority that represents the trust domain that the service resides in.

Rather than invent a new type of document that software must be
taught to support, SPIFFE opts to utilize document types that are
already in wide use and are well-understood. At the time of this
writing, two types of identity documents are defined for use as an
SVID by the SPIFFE specifications: X.509 and JWT.

X509-SVID

An X509-SVID encodes a SPIFFE identity into a standard X.509
certificate (see: https://tools.ietf.org/html/rfc5280). The corresponding
SPIFFE ID is set as a URI type in the Subject Alternative Name (SAN)
extension field. While only one URI SAN field is permitted to be set on
an X509-SVID, the certificate may contain any number of SAN fields of
other types, including DNS SANs.

The SPIFFE Verifiable Identity Document (SVID)

https://tools.ietf.org/html/rfc5280

57

X509-SVIDs are recommended to be used wherever possible, as they
have better security properties than JWT-SVIDs. Specifically, when
used in conjunction with TLS, an X.509 certificate can't be recorded
and replayed by an intermediary.

Utilization of X509-SVID may have additional requirements, please
refer to the X509-SVID portion of the specification (see:
https://github.com/spiffe/spiffe/blob/master/standards/X509-SVID.md).

JWT-SVID

A JWT-SVID encodes a SPIFFE identity into a standard JWT (see:
https://tools.ietf.org/html/rfc7519) – specifically a JWS (see:
https://tools.ietf.org/html/rfc7515). JWT-SVIDs are used as bearer
tokens to prove identity to peers at the application layer. Unlike X509-
SVIDs, JWT-SVIDs su�er from a class of attack known as “replay
attacks (see: https://en.wikipedia.org/wiki/Replay_attack)” in which a
token is obtained and reused by an unauthorized party.

SPIFFE mandates three mechanisms to mitigate this attack vector.
First, JWT-SVIDs must be transmitted over secure channels only.
Second, the audience claim (or `aud` claim) must be set to a strict
string match of the party the token was intended for. Finally, all JWT-
SVIDs must include an expiration, limiting the period that a stolen
token is good for.

It is critically important to note that, despite the mitigations, JWT-
SVIDs are still fundamentally vulnerable to replay attacks, and should
be used with caution and handled carefully. That said, they are an
important part of the SPIFFE specification set as they allow SPIFFE
authentication to work in scenarios where it is not possible to
establish an end-to-end communication channel.

https://github.com/spiffe/spiffe/blob/master/standards/X509-SVID.md
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7515
https://en.wikipedia.org/wiki/Replay_attack

58

Utilization of JWT-SVID may have additional requirements, please refer
to the JWT-SVID portion of the specification (see:
https://github.com/spiffe/spiffe/blob/master/standards/JWT-SVID.md).

A SPIFFE trust bundle is a document containing a trust domain's
public keys. Each SVID type has a specific way that it is represented in
this bundle (e.g. for X509-SVID, CA certificates representing the public
key(s) are included). Every SPIFFE trust domain has a bundle
associated with it and the material in this bundle is used to validate
SVIDs that claim to reside in the said trust domain.

Since the trust bundle does not contain any secrets (only public keys),
it can be safely shared with the public. Despite this fact, it does need
to be distributed securely to protect its contents from unauthorized
modification. In other words, confidentiality is not required, but
integrity is.

SPIFFE bundles are formatted as a JWK Set (or JWKS document) and
are compatible with existing authentication technologies such as
OpenID Connect (see: https://openid.net/connect/). JWKS is a flexible
and widely adopted format for representing various types of
cryptographic keys and documents, which provides for some future-
proofing in the event that new SVID formats are defined.

It is often desirable to allow secure communication between services
that are in di�erent trust domains. In many cases, you can’t put all
your services in a single trust domain. One common example is two
di�erent organizations that need to communicate with each other.
Another might be a single organization that needs to establish security
boundaries, perhaps between a less-trusted cloud environment and
highly-trusted on-premise services.

The SPIFFE Trust Bundle

SPIFFE Federation

https://github.com/spiffe/spiffe/blob/master/standards/JWT-SVID.md
https://openid.net/connect/

59

To be able to accomplish this, each service must possess the bundle
of the foreign trust domain where the remote service hails from. As a
result, SPIFFE trust domains must expose or otherwise share their
bundle contents, enabling services in foreign trust domains to validate
identities from the local trust domain. The mechanism used to share a
trust domain’s bundle contents is known as the bundle endpoint.

Bundle endpoints are simple TLS-protected HTTP services. Operators
wishing to federate with foreign trust domains must configure their
SPIFFE implementation with the name of the foreign trust domain and
the URL of the bundle endpoint, allowing the contents of the bundle
to be periodically fetched.

Fig. 4.3: Illustration of a company architecture with two di�erent trust domains
connected through the federation. Each SPIRE Server can only sign SVIDs for its
own trust domain.

The SPIFFE Workload API is a local, non-networked API that workloads
use to get their current identity documents, trust bundles, and related
information. Crucially, this API is unauthenticated, placing no
requirement on the workload to have any pre-existing credential.
Providing this functionality as a local API allows SPIFFE
implementations to come up with creative solutions for identifying
callers without requiring direct authentication (e.g. by leveraging
features provided by the operating system). The workload API is

The SPIFFE Workload API

60

exposed as a gRPC server and uses a bi-directional stream, allowing
updates to be pushed into the workload as needed.

The Workload API does not require that a calling workload have any
knowledge of its own identity, or possess any credential when calling
the API. This avoids the need for deploying any authentication secrets
alongside the workload.

Fig. 4.4: The Workload API provides information and facilities to leverage SPIFFE
identities.

The SPIFFE Workload API delivers SVIDs and trust bundles to
workloads and rotates them as necessary.

The SPIFFE Runtime Environment (SPIRE) is a production-ready open
source implementation of all five pieces of the SPIFFE specification.

What is SPIRE?

61

The SPIRE project (as well as SPIFFE) is hosted by the Cloud Native
Computing Foundation, a group founded by many of the leading
infrastructure technology companies to provide a neutral home for
open source projects that benefit the cloud native community.

SPIRE has two major components: the server and the agent. The server
is responsible for authenticating agents and minting SVIDs, while the
agent is responsible for serving the SPIFFE Workload API. Both
components are written using a plugin-oriented architecture so they
can easily be extended to adapt to a vast array of di�erent
configurations and platforms.

The architecture of SPIRE consists of two key components, the SPIRE
Server and the SPIRE Agent.

SPIRE Server

SPIRE Server manages and issues all identities in a SPIFFE trust
domain. It uses a data store to hold information about its agents and
workloads, among other things. SPIRE Server is informed of the
workloads it manages through the use of registration entries, which
are flexible rules for assigning SPIFFE IDs to nodes and workloads.

The server can be managed either via API or CLI commands. It is
important to note that since the server is in possession of SVID signing
keys, it is considered a critical security component. Special
consideration should be made when deciding on its placement. This is
discussed later in this book.

Data stores

The SPIRE Server uses a data store to keep track of its current
registration entries as well as the status of the SVIDs it has issued.
Currently, several di�erent SQL databases are supported. SPIRE is

SPIRE architecture

62

packed with SQLite, an in-memory embedded database, for
development and testing purposes.

Upstream authorities

All SVIDs in a trust domain are signed by the SPIRE Server. By default,
the SPIRE Server generates a self-signed certificate (a certificate
signed with its own randomly generated private key) to sign
SVIDs unless an Upstream Certificate Authority plugin interface is
configured. The plugin interface called Upstream Certificate
Authorities allows SPIRE to obtain its signing certificate from another
certificate authority.

In many simple cases, it’s fine to use a self-signed certificate. However,
for larger installations, it may be desirable to take advantage of
preexisting Certificate Authorities and the hierarchical nature of X.509
certificates to make multiple SPIRE Servers (and other software that
generates X.509 certificates) work together.

In some organizations, the upstream certificate authority might be a
central certificate authority that your organization uses for other
purposes. This is useful if you have many di�erent kinds of certificates
in use, and you want them all to be trusted throughout your
infrastructure.

SPIRE Agent

SPIRE Agent has just a single function, albeit a very important one: to
serve the Workload API. In the course of accomplishing this feat, it
solves some related problems such as determining the identity of
workloads, calling it, and securely introducing itself to the SPIRE
Server. In this arrangement, it is the agent that performs all of the
heavy lifting.

63

Agents do not require active management in the way that SPIRE
Servers do. While they do require a configuration file, SPIRE Agents
receive information about the local trust domain and the workloads
that might call it directly from the SPIRE Server. When defining new
workloads in a given trust domain, the records are simply defined or
updated in a SPIRE Server, and information about the new workload
propagates to the appropriate agents automatically.

Fig. 4.5: SPIRE Agent exposes the SPIFFE Workload API and works together with
SPIRE Servers to issue identities to the workloads calling the agent.

Plugin architecture

SPIRE is built as a set of plugins so that it can easily grow to
accommodate new node attestors, workload attestors, and upstream
authorities.

64

Fig. 4.6: Illustration of the key plugin interfaces supported by SPIRE. The server
includes Node Attestor, KeyManager, and Upstream Authority plugins, while the
Agent side includes Node Attestor and Workload Attestor plugins.

SVID management

SPIRE Agent uses its identity that it obtains during node attestation to
authenticate to the SPIRE Server and obtains SVIDs for the workloads
it is authorized to manage. Since SVIDs are time-limited, the agent is
also responsible for renewing SVIDs as needed and communicating
those updates to the relevant workloads. The trust bundle also rotates
and receives bundles, and those updates are tracked by the agents
and communicated to workloads. The agent maintains an in-memory
cache of all this information, so SVIDs can be served even if SPIRE
Server is down, and also ensures Workload API responses are
performant by negating the need for a roundtrip to the server when
someone calls the Workload API.

65

Attestation is the process through which information about workloads
and their environment is discovered and asserted. In other words, it is
the process to prove with certainty the identity of a workload, using
available information as evidence.

There are two flavors of attestation in SPIRE: node and workload
attestation. Node attestation asserts attributes that describe nodes
(e.g. member of a particular AWS auto-scaling group, or which Azure
region the node resides in), and workload attestation asserts attributes
that describe the workload (e.g. the Kubernetes Service Account it’s
running in, or the path of the binary on disk). The representation of
these attributes in SPIRE is referred to as selectors.

SPIRE supports dozens of selector types out of the box, and the list
continues to grow. As of the time of this writing, the list of node
attestors includes support for bare metal, Kubernetes, Amazon Web
Services, Google Cloud Platform, Azure, and more. Workload attestors
include support for Docker, Kubernetes, Unix, and others.

Additionally, SPIRE’s pluggable architecture allows operators to easily
extend the system to support additional selector types as they see fit.

Node Attestation

Node attestation occurs when an agent starts for the first time. In
node attestation, the agent contacts the SPIRE Server and enters into
an exchange in which the server aims to positively identify the node
the agent is running on and all its related selectors. To accomplish
this, a platform-specific plugin is exercised in both the agent and the
server. For example, in the case of AWS, the agent plugin collects
information from AWS that only that specific node has access to (a
document signed by an AWS key), and passes it to the server. The
server plugin then validates the AWS signature and makes further calls

Attestation

66

to AWS APIs to both assert the accuracy of the claim, as well as gather
additional selectors about the node in question.

Successful node attestation results in the issuance of identity to the
agent in question. The agent then uses this identity for all further
server communication.

Fig. 4.7: Node attestation of a node running in AWS.

Workload attestation

Workload attestation is the process of determining the workload
identity that will result in an identity document being issued and
delivered. The attestation occurs any time a workload calls and
establishes a connection to the SPIFFE Workload API (on every RPC

The agent gathers proof of the node’s identity calling an AWS API.1.

The agent sends this proof of identity to the server.2.

The server validates proof of identity obtained in step 2 by calling
out to the AWS API and then creates a SPIFFE ID for the agent.

3.

67

call a workload makes to the API), and the process from there on is
driven by a set of plugins on the SPIRE Agent.

The moment the agent receives a new connection from a calling
workload, the agent will leverage operating system features to
determine exactly which process has opened the new connection. The
operating system features leveraged will be dependent on the
operating system the agent is running on. In the case of Linux, the
agent will make a system call to retrieve the process ID, the user
identifier, and the globally unique identifier of the remote system
calling on the particular socket. The kernel metadata requested will be
di�erent in BSD and Windows. The agent, in turn, will provide the
attestor plugins with the ID of the calling workload. From there,
attestation fans out across its plugins, providing additional process
information about the caller and returning it to the agent in the form
of selectors.

Each attestor plugin is responsible for introspecting the caller,
generating a set of selectors that describe it. For example, one plugin
may look at kernel level details and generate selectors such as the
user and group that the process is running as, while another plugin
may communicate with Kubernetes and generate selectors such as the
namespace and service account that the process is running in. A third
plugin may communicate with the Docker daemon and generate
selectors for Docker image ID, Docker labels, and container
environment variables.

68

Fig. 4.8: Workload attestation.

For SPIRE to issue workload identities, it must first be taught about
the workloads expected or allowed in its environment; what workloads
are supposed to run where, what their SPIFFE IDs and general shape
should be. SPIRE learns this information via registration entries, which

A workload calls the Workload API to request an SVID.1.

The agent interrogates the node’s kernel to get the attributes of the
calling process.

2.

The agent gets the discovered selectors.3.

The agent determines the workload’s identity by comparing
discovered selectors to registration entries and returns the correct
SVID to the workload.

4.

Registration entries

69

are objects that are created and managed using SPIRE APIs that
contain the aforementioned information.

For each registration entry, there are three core attributes. The first is
known as the Parent ID — this e�ectively tells SPIRE where a
particular workload should be running (and, by extension, which agents
are authorized to ask for SVIDs on its behalf). The second is a SPIFFE
ID — when we see this workload, what SPIFFE ID should we issue it?
And finally, SPIRE needs some information that helps it to identify the
workload, which is where the selectors discovered from attestation
come in.

Fig. 4.9: Three core attributes of registration entries.

Registration entries bind SPIFFE IDs to the nodes and workloads that
they are meant to represent.

A registration entry can describe either a group of nodes or a
workload, where the latter often references the former through the use
of a Parent ID.

Node entries

Registration entries that describe a node (or a group of nodes) use
selectors generated by node attestation to assign a SPIFFE ID, which
can be referenced later when registering workloads. A single node may
be attested to have a set of selectors that match multiple node

70

entries, allowing it to participate in more than one group. This a�ords a
great deal of flexibility when deciding exactly where a given workload
is permitted to run.

SPIRE ships with a variety of node attestors ready to use and each one
generates platform-specific selectors. While SPIRE Server supports
loading multiple node attestor plugins at once, SPIRE Agent supports
loading only one. Some examples of available node selectors are:

Node entries have their Parent ID set to the SPIFFE ID of the SPIRE
Server, as it is the server which is performing attestation and asserting
that the node in question does indeed match the selectors defined by
the entry.

Workload entries

Registration entries that describe a workload use selectors generated
by workload attestation to assign a SPIFFE ID to workloads when a
certain set of conditions are met. When the Parent ID and selectors
conditions are met, the workload can receive a SPIFFE ID.

The Parent ID of a workload entry describes where this workload is
authorized to run. Its value is the SPIFFE ID of a node or set of nodes.
SPIRE Agents running on the node(s) receive a copy of this workload
entry, including the selectors that must be attested before issuing an
SVID for that particular entry.

On Google Cloud Platform (GCP),•
On Kubernetes, the name of the Kubernetes cluster the node is
part of

•

On Amazon Web Services (AWS), the AWS Security Group of the
node

•

71

When a workload calls the agent, the agent performs workload
attestation and cross-references the discovered selectors with the
selectors defined in the entry. If a workload possesses the entire set of
defined selectors, then the conditions are met and the workload is
issued an SVID with the defined SPIFFE ID.

Unlike node attestation, SPIRE Agent supports loading many workload
attestor plugins simultaneously. This allows mix-and-match selectors
in workload entries. For example, a workload entry may require that a
workload is in a specific Kubernetes namespace, have a specific label
applied to its Docker image, and have a specific SHA sum.

The specific set of threats that SPIFFE and SPIRE face are situational.
Understanding the general threat model of SPIFFE/SPIRE is an
important step in asserting that your specific needs can be met, and
discovering where further mitigation may be necessary.

In this section, we will describe the security boundaries of both SPIFFE
and SPIRE and the impact of compromise of each component in the
system. Later in the book, we’ll cover specific security considerations
imposed by di�erent SPIRE deployment models.

SPIFFE and SPIRE are intended to be used as the foundation for
distributed identity and authentication that is consistent with cloud
native (see: https://github.com/cncf/toc/blob/master/DEFINITION.md) design
architectures. SPIRE supports Linux and the BSD family (including
MacOS). Windows is not currently supported, though some early
prototyping has been done in this area.

SPIFFE/SPIRE Applied Concepts
Threat Model

Assumptions

https://github.com/cncf/toc/blob/master/DEFINITION.md

72

SPIRE adheres to the zero trust networking security model in which it
is assumed that network communication is hostile or presumably fully
compromised. That said, it is also assumed that the hardware on
which SPIRE components run, as well as its operators, are trustworthy.
If hardware implants or insider threats are part of the threat model,
careful considerations should be made around the physical placement
of SPIRE Servers and the security of their configuration parameters.

There may further be implied trust in third-party platforms or
software, depending on the chosen methods of node and workload
attestation. Asserting trust through multiple independent mechanisms
provides a greater assertion of trust. For example, leveraging AWS or
GCP-based node attestation implies that the compute platform is
assumed to be trustworthy, and leveraging Kubernetes for workload
attestation implies that the Kubernetes deployment is assumed to be
trustworthy. Due to the great variety of ways that attestation can be
accomplished, and the fact that the SPIRE architecture is fully
pluggable, the security (and associated assumptions) of these
processes are not considered in this assessment. Instead, they should
be evaluated on a case-by-case basis.

73

Fig. 4.10: Components considered as part of the threat model.

Security boundaries are formally understood as the line of intersection
between two areas of di�ering levels of trust.

There are three major security boundaries defined by SPIFFE/SPIRE:
one between workloads and agents, one between agents and servers,
and another between servers in di�erent trust domains. In this model,
workloads are fully untrusted, as are servers in other trust domains
and, as mentioned previously, network communication is always fully
untrusted.

Security boundaries

74

Fig. 4.11: SPIFFE/SPIRE security boundaries.

The workload | agent boundary

As one moves through the system and across these boundaries, the
level of trust slowly increases. Starting with workloads, we move
across a security boundary to the agent. It is generally expected
(though not required) that a security mechanism beyond SPIRE design
exists between the workload and the agent, for example by leveraging
Linux user permissions and/or containerization.

The agent does not trust the workload to give any kind of input. All
assertions made by the agent about the workload’s identity occur
through out-of-band checks. In the context of workload attestation,

75

this is an important detail — any selector whose value can be
manipulated by the workload itself is inherently insecure.

The agent | server boundary

The next boundary exists between the agent and the servers. Agents
are more trustworthy than workloads but less trustworthy than
servers. An explicit design goal of SPIRE is that it should be able to
survive node compromises. Since workloads are fully untrusted, we are
only one or two attacks away from node compromise at any given
point in time. Agents have the ability to create and manage identities
on the workload’s behalf, but it is also necessary to limit the power of
any given agent to only what is strictly necessary for it to complete its
task (following the principle of least privilege).

To mitigate the impact of node (and agent) compromise, SPIRE
requires knowledge of where a particular workload is authorized to run
(in the form of a Parent ID). Agents must be able to prove ownership of
a registration entry before they can obtain an identity for it. As a
result, compromised agents are not able to obtain arbitrary identities
— they may only obtain the identities of workloads that should be
running on the node in the first place.

It is worth noting that communications between the SPIRE Server and
SPIRE Agent can use TLS and mutual TLS at di�erent points in time
during the node attestation process depending on whether the node
has yet to be attested or if the agent already has a valid SVID and can
use it for mutual TLS, at which point all communications between
server and agent are secure.

The server | server boundary

The final boundary exists between servers in di�erent trust domains.
SPIRE Servers are trusted only to mint SVIDs within the trust domain
they directly manage. When SPIRE Servers federate with each other

76

and exchange public key information, the keys they receive remain
scoped to the trust domain they were received from. Unlike Web PKI,
SPIFFE does not simply throw all the public keys in a big mixed bag.
The result is that if compromises in foreign trust domains do not result
in the ability to mint SVIDs in the local trust domain.

It should be noted that SPIRE Servers do not have any multi-party
protection. Every SPIRE Server in a trust domain has access to signing
keys with which it can mint SVIDs. The security boundary that exists
between servers is strictly limited to servers of di�erent trust domains
and does not apply to servers within the same trust domain.

While workloads are always considered to be compromised, it is
expected that agents are generally not. If an agent is compromised, the
attacker will be able to access any identity that the respective agent is
authorized to manage. In deployments where there is a 1:1 relationship
between workload and agent, this is of less concern. In deployments
where agents manage multiple workloads, this is an important point to
understand.

Agents are authorized to manage an identity when they are referenced
as a parent of that identity. For this reason, it is a good idea to scope
registration entry Parent IDs as tightly as is reasonably possible.

In the event of a server compromise, it can be expected that the
attacker will be able to mint arbitrary identities within that trust
domain. SPIRE Server is undoubtedly the most sensitive component of
the entire system. Care should be taken in the management and
placement of these servers. For example, SPIRE solves for node
compromise as workloads are untrusted, but if SPIRE Servers run on
the same host as the untrusted workloads, then the servers no longer
enjoy the protection that was once a�orded by the agent/server
security boundary. Therefore, it is strongly recommended that SPIRE

The impact of component compromise

77

Servers be placed on hardware that is distinct from the untrusted
workloads they are meant to manage.

The Agent caveat

SPIRE accounts for node compromise by scoping the privileges of an
agent to only the identities it is directly authorized to manage… but if
an attacker can compromise multiple agents, or perhaps all agents,
the situation is decidedly much worse.

SPIRE Agents do not have any communication pathway between each
other, significantly limiting the possibility of lateral movement between
agents. This is an important design decision that is intended to
mitigate the impact of a possible agent vulnerability. However, it
should be understood that certain configurations or deployment
choices may undermine this mitigation in part or whole. For example,
SPIRE Agent supports exposing a Prometheus metrics endpoint,
however, if all agents expose this endpoint and vulnerability exists
there, then lateral movement becomes trivial unless adequate
network-level controls are in place. For this reason, exposing the SPIRE
agent to incoming network connections is strongly discouraged.

78

If you’ve read the previous chapters, you must be very excited to get
started using SPIRE to manage identity in a way that can be leveraged
across many di�erent types of systems and all your organization’s
services. However, before you begin you need to consider that
deploying SPIRE is a major infrastructure change that has the potential
to a�ect many di�erent systems. This chapter is about how to start
planning a SPIRE deployment: getting buy-in, enabling SPIRE support
non-disruptively, and then using it to implement new security controls.

To deploy SPIRE, you’ll need to identify stakeholders from the security,
software development, and DevOps teams. Who will maintain the
SPIRE Servers themselves? Who will deploy the agents? Who will write
the registration entries? Who will integrate SPIFFE functionality into
the applications? How will it impact existing CI/CD pipelines? If a
service interruption occurs, who will fix it? What are the performance
requirements and service level objectives?

In this book, as well as many public blog posts and conference talks,
there are examples of organizations that have successfully deployed

5. Before You Start

This chapter is designed to prepare you for the many decisions
you will need to make when rolling out SPIFFE/SPIRE.

Prepare the Humans

Assemble the crew and identify other stakeholders

79

SPIRE that can serve both as a pattern to follow and as helpful
material to proselytize SPIRE to your colleagues.

SPIRE cross-cuts several di�erent traditional information technology
silos, so expect to see more cross-organizational collaboration among
your DevOps teams, software development teams, and security teams.
It is important that they work together to ensure a successful and
seamless deployment. Consider that each of these teams has di�erent
needs and priorities, that will need to be addressed to get their buy-in.

While planning a SPIRE deployment, you will need to understand what
outcomes matter the most to your business and frame these as
drivers for the project and the value of the solution you will deliver.
Each team needs to see the benefits of SPIRE to themselves as well
as to the business as a whole. Many of the benefits of a SPIRE
deployment are described in Chapter 2: Benefits of this book and in
this section, we will distill some of these benefits down into
compelling arguments.

Compelling arguments to security teams

Reducing the security team’s workload is one very persuasive case for
deploying SPIRE: instead of deploying ad hoc security solutions, and
managing hundreds or thousands of certificates manually, they can
focus on designing the right registration entries to make sure each
service gets the right identity.

A more long-term benefit is that SPIRE can increase the overall
security posture of the organization, as SPIRE has no credentials that
can easily be stolen or misused. A large range of attacks related to
misappropriation or misrepresentation of credentials, as well as
sensitive data exposure, are mitigated. It is possible to prove to an
outside auditor that the right services are communicating securely

State your case and get buy-in

80

with each other, with no possibility of accidental oversights. Even if an
outsider can compromise one service, their ability to launch attacks on
other services is limited.

Compelling arguments to software development teams

For application development teams, their ability to move faster by not
waiting on tickets or manual workflows to provision certificates is the
most compelling case. If they are currently manually deploying secrets
alongside their code and getting talked to by their security teams, they
no longer have to endure that. They also don’t need to manage secrets
in a secret store.

A secondary benefit is that software components may be able to
directly communicate in ways they couldn’t do securely before. If cloud
services can’t access a critical database or essential cloud service
because there’s no way to do it securely, it may be possible to use
SPIFFE identities to create a secure connection, providing new
architecture potential for your teams.

Compelling arguments to DevOps teams

The greatest gains of deploying SPIRE are for DevOps teams. If each
service has its own secure identity, then services can be deployed
anywhere — in any on-premise data center, cloud provider, or region
within one cloud provider. This new flexibility allows lowered cost,
higher scalability, and improved reliability since deployment decisions
can be made independently of security requirements.

Another key benefit for DevOps teams is that incoming requests to
each service are all tagged with a SPIFFE ID, which can be logged,
measured, and reported to a monitoring system. This is extraordinarily
helpful for performance management in large organizations with
hundreds or thousands of services.

81

The first goal in planning a SPIRE deployment is to determine whether
every service needs to be SPIFFE-aware, or whether 'islands' of non-
SPIFFE services can still satisfy requirements. Moving every service to
SPIFFE is the most straightforward option, but it might be challenging
to implement all at once, especially in very large organizations.

Some environments are complex with either multiple organizations
represented or a combination of legacy and new development. In this
scenario, there is often a desire to make only a subset of the
environment SPIFFE-enabled. Two options need to be considered,
depending on the level of integration between systems and the
complexity across them. Let’s take a look at these two architectures,
we’ll call them 'Independent Islands' and 'Bridged Islands'.

Each island is considered its own trust domain and on each island are
workloads or ‘residents’.

Create a Plan

Planning for islands and bridges

82

Independent islands

Fig. 5.1: Here there are two independent SPIFFE deployments (Independent
Islands).

The independent island model allows individual trust domains to
operate independently of one another. This is often the easiest option
because each island can run SPIRE in a way that makes sense for that
island.

83

Bridged islands

Fig. 5.2: Here we have two independent SPIFFE deployments bridged by
Federation, enabling services from each island to trust the other and thereby
communicate. There is still no communication between SPIFFE and non-SPIFFE
islands.

Fig. 5.3: Adding gateways to a non-SPIFFE island is a way to bridge SPIFFE and
non-SPIFFE islands.

84

The bridged islands model allows a non-SPIFFE service on a non-
SPIFFE island to talk to a gateway. The gateway then forwards the
request on to the SPIFFE-enabled island resident it is intended for,
we’ll call them Zero. From Zero’s perspective, the gateway sent the
request. Zero and his friends from the SPIFFE-enabled islands can
authenticate to the gateway and send messages to services on the
non-SPIFFE island.

Fig. 5.4: In this diagram, there is a SPIFFE-enabled ecosystem (the mainland), and
within that ecosystem, there is a pocket of non-SPIFFE services (the island on the
lake). For services on the mainland and island to talk to each other, there needs to
be a gateway.

85

Fig. 5.5: Bridge islands architecture.

With a Bridged Islands architecture, gateways are created on non-
SPIFFE-enabled islands. There are many reasons these non-SPIFFE
islands may not be able to easily adopt a SPIFFE architecture: there
may be legacy software that cannot be easily modified or updated; the
island may be using its own identification ecosystem, such as Kerberos
or one of the other options described in the Comparing SPIFFE to
Other Technologies chapter; or the system may be running workloads
on technologies not well suited to the models of existing SPIFFE
solutions such as SPIRE.

In these cases, it can be useful to use a gateway service to bridge the
connection between the SPIFFE world and non-SPIFFE island. When a
SPIFFE-enabled workload wants to talk to a workload in the non-
SPIFFE island, it creates an authenticated connection with the gateway
which then creates a connection to the target workload. This
connection to the target workload may be unauthenticated or use the
non-SPIFFE identity solution for that island. Similarly, when a workload
from the non-SPIFFE-enabled island wants to connect to a SPIFFE-
enabled workload, the non-SPIFFE workload connects to the gateway

86

which then creates a SPIFFE-authenticated connection to the target
SPIFFE-enabled workload.

In this scenario, the authentication that happens between the gateway
and the SPIFFE-enabled workload is terminated at the gateway. This
means that the SPIFFE-enabled workload can verify that it is talking to
the appropriate gateway, but cannot verify that it is talking to the
correct workload on the other side of it. Similarly, the target workload
only knows that the gateway service has sent it a request, but loses
the authentication context of the original SPIFFE-enabled workload.
This model allows these complicated organizations to begin adopting
SPIFFE without having to convert all at once.

In cases when requests and workflows pass through a non-SPIFFE
island, it can be useful to utilize JWT-SVIDs for propagating across
requests. Even better, you can use X509-SVIDs to sign documents
(such as HTTP Message Request signing (see:
https://tools.ietf.org/id/draft-cavage-http-signatures-12.html)) rather than
only using service-to-service mutually authenticated TLS so that the
authenticity of the entire message can be validated by SPIFFE-enabled
workloads on the other side. This is especially useful for islands that
are known to have weak security properties since it provides
confidence that messages passed through the intermediate ecosystem
have not been manipulated.

When preparing to embark on a roll out, it is important to instrument
services so that metrics and flow logs are emitted in a way that:

Documentation and instrumentation

The people overseeing the roll out know which (and how many)
services are SPIFFE-enabled and which (and how many) are not.

•

https://tools.ietf.org/id/draft-cavage-http-signatures-12.html

87

It is important to prepare for the roll out by creating reference
documentation for client and server implementers that anticipates the
kind of support requests you will receive.

It is also important to create tooling to assist in common debug and
troubleshooting tasks. Recalling the benefits of SPIFFE and SPIRE,
introducing SPIFFE to your organization should empower developers
and remove roadblocks. Leaving stakeholders with an impression that
you are adding work or creating friction will ultimately slow or halt
broader adoption. To curtail this, and ensure that documentation and
tooling cover the appropriate topics, we suggest the following
preparatory steps:

A Client Author knows which services they call are SPIFFE-enabled
and which are not.

•

A Service Owner knows which and how many of their clients are
calling the SPIFFE-enabled endpoint, and which are calling the
legacy endpoint.

•

88

Performance implications should be considered as part of your
deployment planning.

As part of your roll out preparation, you should check benchmarks of a
range of workloads that are representative of a variety of applications
that your organization runs in production. This ensures that you are at
least aware of, and hopefully prepared to address, any performance
issues that may arise during the rollout.

TLS performance

In many organizations, the first concern that developers and operation
teams raise is that establishing mutual TLS connections between
services will be too slow. On modern hardware, with modern TLS
implementations, the performance impact of TLS is minimal:

Step Comments

Decide what security
features you will need
SPIFFE for

SPIFFE identities can be used to create mutual TLS
connections, for authorization, or other functionality,
such as audit logs

Determine what
formats of SVIDs to
use and for what
purpose.

It is most common to use X509-SVIDs for mutual TLS,
but determine whether this applies and whether SVIDs
will be used for any other applications.

Determine the number
of workloads that will
require identities

Not every workload needs identities, especially early on

Determine the number
of separate trust
domains that are
needed

Each trust domain needs its own SPIRE Server
deployment. Details on making this decision are in the
next chapter.

Determine what
languages,
frameworks, IPC
technologies, etc. are
in use at your
organization that will
need to be SPIFFE-
compatible

If using X.509-SVIDs for mutual TLS, determine what
web servers are in use in your organization (Apache
HTTPD, NGINX, Tomcat, Jetty, etc.) and what client
libraries are in use. If client libraries are expecting to
perform DNS hostname verification, make sure your
SPIFFE deployment is compatible with this expectation.

table

Understanding performance implications

89

In general, performance implication depends on multiple factors,
including network topology, API gateways, L4-L7 firewalls, and many
others. Also, the protocols you are using and their implementation and
certificate and key sizes might a�ect performance, so it is a pretty
broad topic to cover.

The table below provides data points about overhead for two di�erent
stages compared to TCP, specifically for handshake and data transfer
phases.

“On our production frontend machines, SSL/TLS accounts for less
than 1% of the CPU load, less than 10 KB of memory per
connection, and less than 2% of network overhead. Many people
believe that SSL/TLS takes a lot of CPU time and we hope the
preceding numbers will help to dispel that.” — Adam Langley,
Google, Overclocking SSL (see:
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html), 2010

“We have deployed TLS at a large scale using both hardware and
software load balancers. We have found that modern software-
based TLS implementations running on commodity CPUs are fast
enough to handle heavy HTTPS tra�c load without needing to
resort to dedicated cryptographic hardware.” — Doug Beaver,
Facebook, HTTP2 Expression of Interest (see:
https://lists.w3.org/Archives/Public/ietf-http-wg/2012JulSep/0251.html),
2012

https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://lists.w3.org/Archives/Public/ietf-http-wg/2012JulSep/0251.html

90

There is a rich history of study into how organizations react to, e�ect,
and process change. There have also been many interesting studies
about the acceptance and adoption of new technologies both within
the general public and within organizations. To do any real justice to
these topics is beyond the scope of this book, but we would be remiss
if we didn’t mention these topics due to their relevance to a
successful SPIFFE roll out.

There are several ways to convince others a change must occur within
your organization. The below list outlines ways in which you can
pursue this change with SPIFFE and SPIRE.

TLS Phase Protocol Overhead Latency CPU Memory

Handshake
2 kB for TLS
3 kB for mTLS
+1 kB/add’l Cert

12-17 mS ~0.5% more than TCP <10 kB/conn

Data Transfer 22B/packet <3 uS <1% more than TCP <10 kB/conn

table

Making the Change to SPIFFE and
SPIRE

Convincing change to occur

Perceived usefulness – how useful does someone think SPIFFE
will be in helping them enhance their job performance. The ability
to demonstrate tangible results helps to improve perceived
usefulness.

•

Perceived ease-of-use – how easy to use will one think SPIFFE is.
Dedication to the user experience of developers and operators is
essential.

•

91

Fig. 5.6: Technology adoption curve (adapted from Roger’s bell curve and Gartner’s
Hype Cycle). The blue area under the graph represents the amount of change and
number of SPIFFE adopters (see:
https://en.wikipedia.org/wiki/Technology_adoption_life_cycle). The red line
represents enthusiasm and expectations of adopting SPIFFE.

Peer influence – someone’s perception of esteemed other’s views
on the adoption of SPIFFE and whether they have adopted it. This
is where having accumulated political capital within the
organization pays o�. Often convincing the right people is more
important than trying to convince everyone.

•

Image – the degree to which adopting SPIFFE will enhance
someone’s status within the organization.

•

Voluntariness – the extent to which potential adopters of SPIFFE
perceive the adoption to be voluntary or mandatory. The e�ect this
has depends on company culture and individual personalities. Keep
this in mind when facing ‘Forced’ Adopters and Holdouts (covered
later in this chapter).

•

https://en.wikipedia.org/wiki/Technology_adoption_life_cycle

92

Adoption actors correspond with the technology curve and can help
set expectations for how making the change to SPIFFE and SPIRE will
happen. Here we’ve listed adoption actors covered in the technology
curve and added two more you are likely to face.

More information on adoption actors in the technology adoption curve
is available outside of this book. 12

Adoption actors

Innovators — Consider yourself the innovator in your organization
for taking these steps to read this book, getting this far, and
deciding to move forward. You are essentially pioneering the
process for adding SPIFFE and SPIRE to your architectures and you
need help! A ‘white-glove’ level of support and hand-holding is
recommended so be sure to pick volunteers from the low hanging
fruit and precursor categories (covered below) with whom you have
a good rapport.

•

Early adopters — It is important to take the lessons learned from
the ‘white-glove’ ‘hand-holding’ level of support given to the
Innovators and distill those lessons into easily accessible and
understandable documentation, useful tools, and a scalable
support channel. Considerable work may need to be done to
SPIFFE-enable ‘precursors and enablers’ (detailed later in this
chapter) so that developers become unblocked and can then
SPIFFE-enable their services and clients.

•

Early and late majority — By the time you get to onboarding the
early majority of services, the process of SPIFFE-enablement is a
well-oiled machine. All commonly used enablers such as CI/CD,
workflow engines, orchestrators, container platforms, and service
meshes, should be SPIFFE-enabled to ensure that application
developers have support through the application lifecycle no
matter how the application is run.

•

93

Keeping maximum compatibility across your organizations is critical to
consider as you select who goes when. Services should keep their
existing API interfaces and ports as is, and introduce their SPIFFE-
enabled APIs on new ports. This enables a smooth transition and
facilitates a rollback if needed. Service teams with clients from many
other service teams should expect to maintain and support both
endpoints for an extended period (> 6 months).

Once all of the clients of a service become SPIFFE-enabled and the
non-SPIFFE APIs are no longer used, then the non-SPIFFE APIs can be
turned o�.

Laggards — Your organization likely has conservative laggards due
to team culture, individual personality, and regulatory or
compliance requirements. It is important to not jump to
conclusions as to why a service owner falls into this category but
to investigate the root cause and address it appropriately.

•

‘Forced’ converts — The last client to adopt SPIFFE of a SPIFFE-
enabled service may feel forced to convert. It is important to be
prepared for forced converts to make sure that their experience of
adopting SPIFFE is a positive one.

•

Holdouts — They will occur, so make adoption easy and
incentivized. Highlight examples of others currently enjoying the
Plateau of Productivity. You should expect to provide extra support
and hand-holding as holdouts are walked through the process.

•

Considerations for picking who goes when

94

If your environment is too big or complex to do an all at once
approach, it is important to be thoughtful when choosing the order in
which services become SPIFFE-enabled. It can be helpful to think
about it in terms of big rocks, lowest hanging fruit, and "precursors and
enablers" to accelerate adoption.

Be careful that you don’t turn o� legacy endpoints
prematurely. Pay special attention to batch jobs,
scheduled tasks, and other kinds of infrequent or
irregular call patterns. You don’t want to be the person

who caused an end-of-quarter or end-of-financial-year
reconciliation job to fail.

95

Fig. 5.7: Simplified microservice call graph.

Big rocks

Big rocks are the services with the most unique clients and the clients
who connect with the highest count of unique services. Tackling big
rocks early may be tempting to speed up adoption, but may result in
biting o� more than you can chew, causing problems and dissuading
others from adopting SPIFFE.

Looking at the call graph above, the big rocks can be identified by the
nodes with the most connections. They may be key services that are
called by many clients like Service 0. They may be clients that call
many services like Service 4. Big rocks may also include services that

96

are both a client and server, like Service 7. Tackling the migration of
these services entails both benefits and risks:

Benefits

Risks and challenges

Low hanging fruit

Lowest hanging fruit are the services with one to a few clients or
clients that connect to one or a few services. These are often the
easiest to guide through the transition and make ideal first adopters.

Attractive choice•
Potential speedy adoption•
Wide-reaching benefits•
Motivate others to adopt•

Maintain 2 endpoints (legacy and SPIFFE-enabled) for an extended
period

•

Only turn o� the legacy endpoint after all clients have adopted
SPIFFE

•

Increase maintenance cost•
Increases complexity•
Stretches organizational capacity•
Forced adoption•
Disgruntled teams•
Surprise, there’s a turtle in the corner!•

97

Looking at the same graph above, low hanging fruit are nodes with few
connections. These could be services that are a client of a single, other
service, like Service 2. Low hanging fruit may also include a service
with only one client like Service 8. When choosing which minimally
connected services to migrate first, it is wise to choose the ones for
which it will be easiest to maintain dual endpoints (legacy and
SPIFFE), or those services which will have to maintain a dual-stack for
the shortest period.

Benefits

Risks and challenges

Several precursors and enablers can boost the adoption of SPIFFE in
complex and heterogeneous environments. Each of them comes with a
di�erent set of benefits and challenges to consider. The considerations
above apply here too; pick systems that will have the broadest impact
and don’t turn o� non-SPIFFE functionality until you’re certain that all
non-SPIFFE consumers have been converted.

Precursors include tooling and services (such as CI/CD and workflow
engines) that help others adopt SPIFFE. Development and operational

Less risk if something goes wrong•
Easier to completely switch over from legacy to SPIFFE as less
coordination and planning are needed

•

Good practice and learning opportunities•

The roll out may be perceived as being slow•
May not visible or impactful enough to spark the adoption by key
services owners

•

Accelerating adoption

98

tooling should be made available to the first adopters (Innovators) and
iteratively improved as the early adopters come on board. The aim is
for enabling tools and services to have reached maturity as the early
majority comes on board. The late majority and laggards will struggle if
there hasn’t been enough investment in precursors.

Developer tools

Having tools that help improve productivity is essential to a successful
SPIFFE roll out. Gather a list of existing tools at your organization that
are used during the application lifecycle, from development to
operations to end-of-life, and consider which of the existing tools
should be SPIFFE-enabled and whether new tools need to be built,
bought, or deployed. Time and e�ort spent on creating, integrating,
and improving tools often have a force multiplier e�ect in saving
others time and e�ort, thereby helping to facilitate a smoother
transition.

It is worth noting that tools shouldn’t be built or bought in isolation,
but in consultation with their intended users, ideally in an incremental
and iterative way. Doing this properly can take time.

Choosing when a tool is good enough for the first and early adopters is
a judgment call. On rare occasions, the first iteration of tooling is good
enough for the early and late majority.

Continuous Integration and Deployment systems

The implementation of SPIFFE in CI/CD tools can have a great impact
on the adoption of this SPIFFE by the rest of the services in the
organization since most teams have regular interaction with CI/CD
systems. Conversely, however, this means it is a large task to get all
consumers of CI/CD systems to be SPIFFE-aware so it can take a long
time to turn o� all non-SPIFFE integrations.

99

Container orchestrators

If your organization is already using a container orchestrator, such as
Kubernetes, you are halfway there! Orchestrators make it easy to front
your workloads with SPIFFE-aware proxies so your developers don’t
need to be bothered.

Service Mesh

Large microservice service mesh architectures are particularly relevant
as enablers for a SPIFFE deployment because introducing SPIFFE
support in the service mesh is a great way to roll out broad support
without having to get development teams involved.

The relevance of the service mesh also comes with some risks and
challenges. You can imagine that breaking a service mesh can have
wide-ranging e�ects in an environment and may end in a catastrophic
failure.

It is recommended that the team responsible for managing and
supporting the SPIRE infrastructure get involved as early as possible.
Depending on your organization structure, it may very well be the case
that your security or platform team will be responsible for the whole
lifecycle.

Another aspect to think through is how you split operations that
involve any changes that would a�ect the system's security,
performance, and availability. Stricter controls and gates may be
needed to change anything related to your PKI, HSM, key rotations, and
related operations. You may already have a change management

Planning SPIRE Operations

Running SPIRE day in and day out

100

process around it, and if not, this is an excellent time to start
implementing it.

Your team needs to create Runbooks for di�erent failure scenarios and
test them to know what to do and what essential indicators they need
to watch and create monitoring and alerting. You likely already know
what monitoring and alerting systems you will use, but understanding
the telemetry data and metrics available from SPIRE Server and Agent,
and what the data means, would help your teams avoid downtime.

Failure injection exercises help operators analyze how the system
performs under certain failure conditions. You might have certain
assumptions about how your system would react based on the
architecture. Still, there are multiple potential points of failure in a
SPIRE deployment that are worth triggering to test out your
assumptions and can serve as good practice for your operations team
to make sure they have all the alerts and run books in place.

We’ve compiled a list of some scenarios you want to include in your
failure testing program. It is not a complete guide, just a starting point
to build the checklist for your specific environment and deployment
model. It would be best to execute all these tests with a di�erent
downtime: shorter than half of configured TTL and longer.

Testing for resilience

If a SPIRE deployment is using a single database instance, take
down the database.

1.

If a SPIRE deployment is using a database in a cluster with a
written replica and multiple read replicas, take down the write
instance.

2.

Simulate database loss and test data recovery. What if you cannot
recover the data or you can only recover from a month-old data?

3.

101

Define which metrics are the most useful in each testing scenario and
document expected healthy and dangerous ranges for those values
and measure them over time.

These scenarios should be well documented, with the expected
outputs well defined, and then implemented through automated tests
run automatically and periodically.

Like all systems, logging is an essential part of SPIRE. However, the
logs produced by SPIRE also function as evidence for audits and
security incidents. The inclusion of identity issuance information, as
well as observable attestation details, can be used to prove the state
of certain workloads and services. Since the logs can be considered
evidence, you may wish to take note of these few considerations when
putting together a logging solution:

Take down several of the SPIRE Servers in a HA deployment.4.

Take down the Load Balancer in a HA deployment.5.

Take down agents after they have been attested or simulate SPIRE
Server loss completely.

6.

If using upstream authority, simulate upstream authority failure.7.

Simulate root and intermediate CA compromise, rotation, and
revocation.

8.

Logging

Retention of logs should match your organization's legal
requirements

•

The logging system should have high availability in both
admitting logs and storage

•

102

In addition to the usual health of SPIRE components to ensure the
system is functioning properly, you should set up monitoring of
configurations of servers, agents, and trust bundles to detect
unauthorized changes, as these components are the foundation of the
system's security. Besides, monitoring of issuance of identities and
communication between servers and agents can be done to detect
anomalies. However, based on the volume of identities issued in the
system, you may wish to reconsider the extent of monitoring.

SPIRE o�ers flexible support for metric reporting through telemetry
(see: https://en.wikipedia.org/wiki/Telemetry), allowing metrics collection
using multiple collectors. The metrics collectors that are currently
supported are Prometheus, Statsd, DogStatsd, and M3. Multiple
collectors can be configured simultaneously, both in the servers and
the agents.

The logs should be tamper-proof and must be able to
provide evidence of it

•

The logging system should be able to provide a chain of
custody

•

Monitoring

https://en.wikipedia.org/wiki/Telemetry

103

Many metrics are available on SPIRE, with records that cover all the
APIs and functionality:

Server:•
Management API operations•
DB operations per API•
SVID Issuance API operations•
Rotation and Key Management•

Agent:•
Interactions with the Server•
SVID Rotation and Cache Maintenance•
Workload Attestation•

104

The design of your SPIRE deployment should meet the technical
requirements of your team and organization. It should also incorporate
requirements to support availability, reliability, security, scalability, and
performance. This design will serve as the basis for your deployment
activities.

Remember from the previous chapters that a SPIFFE ID is a structured
string representing the identity name of a workload, as you saw in
Chapter 4. The workload identifier section (the path portion of the URI)
appended to the trust domain name (host part of the URI) can be
composed to convey meaning about the ownership of a service to
denote what platform it runs in, who owns it, its intended purpose, or
other conventions. It is purposely flexible and customizable for you to
define.

Your naming scheme may be hierarchical, like file system paths. That
said, to reduce ambiguity, name schemes should not end with a

6. Designing a SPIRE
Deployment

The reader will learn about the components of a SPIRE
deployment, what deployment models are available, and which
performance and security considerations to take into account
when deploying SPIRE.

Your Identity Naming Scheme

105

trailing forward-slash (/). Below you will see some di�erent samples
following three di�erent conventions you can follow, or come up with
your own if you are feeling particularly inspired.

You may find it useful to identify a service directly by the functionality
it presents from an application perspective and the environment it
runs in as part of the software development lifecycle. For example, an
administrator may dictate that any process running in a particular
environment should be able to present itself as a particular identity.
For example:

spiffe://staging.example.com/payments/mysql

or,

spiffe://staging.example.com/payments/web-fe

The two SPIFFE IDs above refer to two di�erent components — the
MySQL database service and a web front end — of a payments service
running in a staging environment. The meaning of ‘staging’ is an
environment and ‘payments’ a high-level service.

The prior two and the following two examples are illustrative and not
prescriptive. The implementer should weigh their options and decide
their preferred course of action.

Identifying services directly

106

Often higher level orchestrators and platforms have their own identity
concepts built-in (such as Kubernetes service accounts, or AWS/GCP
service accounts) and it is helpful to be able to directly map SPIFFE
identities to those identities. For example:

spiffe://k8s-workload-cluster.example.com/ns/staging/sa/default

In this example, the administrator of the trust domain example.com is
running a Kubernetes cluster k8s-workload-cluster.example.com, which
has a ‘staging’ namespace, and within this, a service account (SA)
called ‘default’.

The SPIFFE path may be opaque, and then the metadata can be kept
in a secondary database. That can be queried to retrieve any metadata
associated with the SPIFFE identifier. For example:

spiffe://example.com/9eebccd2-12bf-40a6-b262-65fe0487d4

We are going to overview the three most common ways to run SPIRE in
production. It doesn't mean that we want to limit the available choices
here, but for the sake of this book, we are going to limit the scope to
these common ways to deploy the SPIRE Server. We will focus on the
server deployment architectures only since there is usually one agent
installed per node.

Identifying service owners

Opaque SPIFFE identity

SPIRE Deployment Models

107

The number of trust domains are expected to be relatively fixed, only
revisited occasionally, and not expected to drift much over time. On
the other hand, the number of nodes in a given trust domain, and the
number of workloads, are expected to fluctuate frequently according
to load and growth.

Choosing whether you centralize into a single root of trust with one big
trust domain, or distribute and isolate into multiple trust domains, will
be dictated by many factors. The security considerations section in
this chapter talks about the use of trust domains for isolation. A few
other reasons why you may choose multiple smaller trust domains
over one large one include increased availability and isolation of
tenants. Variables such as administrative domain boundaries, number
of workloads, availability requirements, number of cloud vendors, and
authentication requirements will also influence decisions here.

For example, you may choose to have a separate trust domain for
every single administrative boundary for autonomy between di�erent
groups in the organizations that may have di�erent development
practices.

Table 6.1: Decision table for trust domain sizing

A single SPIRE server, in a high availability configuration, is the best
starting point for environments with a single trust domain.

How many: big trust domains vs smaller trust domains

Single Trust Domain Nested Federated

Size of deployment Large Very Large Large

Multi-region No Yes Yes

Multi-cloud No Yes Yes

table

One for one: Single SPIRE cluster in your single trust
domain

108

Fig. 6.1: Single trust domain.

However, when deploying a single SPIRE Server to your trust domain
that spans regions, platforms, and cloud provider environments, there
are potential scaling issues when SPIRE Agents are dependent on a
distant SPIRE Server. Under circumstances where a single deployment
would span multiple environments, a solution to address the use of a
shared data store over a single trust domain is to configure SPIRE
Servers in a nested topology.

A nested topology for your SPIRE Servers lets you keeps
communication between SPIRE Agents and the SPIRE Server as close
as possible.

In this configuration, the top-tier SPIRE Servers hold the root
certificates and keys, and the downstream servers request an
intermediate signing certificate to use as the downstream server's
X.509 signing authority. If the top tier goes down, intermediate servers
continue to operate, providing resilience to the topology.

The nested topology is well suited for multi-cloud deployments. Due
to the ability to mix and match node attestors, the downstream
servers can reside and provide identities for workloads and Agents in
di�erent cloud provider environments.

Nested SPIRE

109

Fig. 6.2: Nested SPIRE topology.

While nested SPIRE is an ideal way to increase the flexibility and
scalability of your SPIRE deployment, it doesn’t provide any additional
security. Since X.509 doesn’t provide any way to constrain the powers
of intermediate certificate authorities, every SPIRE Server can generate
any certificate. Even if your upstream certificate authority is a
hardened server in a concrete bunker in your company’s basement, if
your SPIRE Server is compromised your entire network may be
vulnerable. That’s why it’s important to make sure every SPIRE Server
is secure.

110

Fig. 6.3: Illustration of a company architecture with one upstream SPIRE Server
and two nested SPIRE Servers. Each of the two nested SPIRE Servers can have its
own configuration (relevant for AWS and Azure), and if either one of them fails, the
other is una�ected.

Deployments may require multiple roots of trust, perhaps because an
organization has di�erent organizational divisions with di�erent
administrators, or because they have separate staging and production
environments that occasionally need to communicate.

Another use case is SPIFFE interoperability between organizations,
such as between a cloud provider and its customers.

Federated SPIRE

111

Fig. 6.4: SPIRE Server using Federated trust domains.

These multiple trust domains and interoperability use cases both
require a well-defined, interoperable method for a workload in one
trust domain to authenticate a workload in a di�erent trust domain. In
federated SPIRE, trust between the di�erent trust domains is
established by first authenticating the respective bundle endpoint,
followed by retrieval of the foreign trust domain bundle via the
authenticated endpoint.

The simplest way to run SPIRE is on a dedicated server, especially if
there is a single trust domain, 13 and the number of workloads is not
large. You can co-host a data store on the same node using SQLite or
MySQL as a database in that scenario, simplifying the deployment.
However, when using the co-hosting deployment model, remember to
consider database replication or backups. If you lose the node, you can
quickly run the SPIRE Server on another node, but all your Agents and
workloads need to re-attest to get new identities if you lose the
database.

Standalone SPIRE Servers

112

Fig. 6.5: A single dedicated SPIRE Server.

Avoiding a single point of failure

The benefit of simplicity always comes with a trade-o�. If there is only
one SPIRE Server and it is lost, everything is lost and will need to be
rebuilt. The system's availability can be improved by having more than
one server. There will still be a shared data store and secure
connectivity and data replication. We'll talk about the di�erent security
e�ects of such decisions later in the chapter.

To scale the SPIRE Server horizontally, configure all servers in the
same trust domain to read and write to the same shared data store.

The data store is where the SPIRE Server persists dynamic
configuration information such as registration entries and identity
mapping policies. SQLite is bundled with the SPIRE Server and is the
default data store.

113

Fig. 6.6: Multiple SPIRE Server instances running on HA.

When working on the data store design, your primary focus should be
on redundancy and high availability. You need to determine whether
each of the SPIRE Server clusters has a dedicated data store or if
there should be a shared one.

The choice of the type of database might be influenced by the entire
system availability requirements and your operations team’s abilities.
For example, if the operations team has experience supporting and
scaling MySQL, that should be the primary choice.

Multiple data stores allow more independence for each dedicated part
of the system. For example, the SPIRE clusters in AWS and GCP clouds

Data Store Modeling

Dedicated data store per cluster

114

might have independent data stores, or each VPC in AWS might have a
dedicated data store. The advantage with this choice is if one region or
cloud provider fails, SPIRE deployments running in the other regions or
cloud providers are una�ected.

The downside of a data store per cluster becomes most apparent
during a major failure. If the SPIRE data store (and hence all SPIRE
Servers) in a region fails, it would require either restoring the local data
store or switching the Agents over to another SPIRE Server cluster in
the same trust domain, assuming the trust domain spans regions.

If it becomes necessary to switch agents over to a new cluster, special
considerations must be made as the new cluster won't be aware of
identities issued by another SPIRE cluster, or the registration entries
that cluster contained. Agents will need to re-attest to this new
cluster, and the registration entries will need to be restored either via
backup or rebuilding.

Fig. 6.7: What happens if you need to migrate all the agents in one cluster to
another cluster?

Having a shared data store solves the issues of having individual data
stores described above. However, it may make the design and

Shared data store

115

operations more intricate and rely on other systems to detect outages
and update DNS records in the event of a failure. Further, the design
still requires pieces of database infrastructure for each SPIRE
availability domain, per region or data center depending on the specific
infrastructure. Please check the SPIRE documentation for more details
(see:
https://github.com/spiffe/spire/blob/master/doc/plugin_server_datastore_sql.md).

Fig. 6.8: Two clusters using a Global data store scheme.

When an infrastructure outage occurs, the main concern is how to
continue to issue SVIDs to the workloads that need an SVID to operate
properly. The Spire Agent's in-memory cache of SVIDs has been
designed to be the primary line of defence against a short-term
outage.

The SPIRE Agent periodically fetches the SVIDs that are authorized to
be issued from the SPIRE Server, to be prepared to deliver them to the

Managing Failures

https://github.com/spiffe/spire/blob/master/doc/plugin_server_datastore_sql.md

116

workloads when they need them. This process is done in advance of
any request for an SVID from a workload.

There are two advantages of the SVID Cache: performance and
reliability. When a workload asks for its SVID, the Agent does not need
to request and wait for SPIRE Server to mint the SVID, because it will
already have it cached which avoids a round trip to SPIRE Server.
Additionally, if the SPIRE Server is not available at the time that the
workload requests its SVID, that will not a�ect the issuance of the
SVID because the Agent will have it cached already.

We need to make a distinction between X509-SVIDs and JWT-SVIDs.
JWT-SVIDs cannot be minted in advance, because the Agent does not
know the specific audience of the JWT-SVID needed by the workload,
the Agent only pre-caches X509-SVIDs. However, the SPIRE Agent does
maintain a cache of issued JWT-SVIDs that allows it to issue JWT-
SVIDs to workloads without contacting the SPIRE Server as long as the
cached JWT-SVID is still valid.

One important attribute of an SVID is its time-to-live (TTL). The SPIRE
Agent will renew an SVID in the cache if the remaining lifetime is less
than one half the TTL. This provides us the indication that SPIRE is
conservative in terms of the confidence in the underlying
infrastructure to be able to deliver an SVID. It also provides a hint
about the role that the SVID TTL has in the resilience against outages.
Longer TTLs provide more time to fix and recover any infrastructure
outage, but there is a compromise between security and availability
when choosing the TTL. A long TTL will provide ample time to
remediate outages, but at the cost of exposing SVIDs (and related
keys) for a longer period. Short TTLs reduce the time window that a
malicious actor can take advantage of a compromised SVID, but will
require quicker responses against an outage. Unfortunately, there is no

Performance and reliability

Time-to-live

117

"magic" TTL that is a best choice for all deployments. It has to be
chosen while considering what tradeo� you are willing to accept
between the time window within which you must solve outages and
the acceptable exposure of issued SVIDs.

This section covers the details of running SPIRE in Kubernetes.
Kubernetes is a container orchestrator that can manage software
deployment and availability on many di�erent cloud providers, and
also on physical hardware. SPIRE includes several di�erent forms of
Kubernetes integration.

Kubernetes includes the concept of a DaemonSet, which is a container
that is automatically deployed across all nodes, with one copy running
per node. This is a perfect way to run the SPIRE Agent since there
must be one agent per node.

As new Kubernetes nodes come online, the scheduler will
automatically spin up new copies of the SPIRE Agent. First, each agent
needs a copy of the bootstrap trust bundle. The easiest way to
distribute this is through a Kubernetes ConfigMap.

Once an agent has the bootstrap trust bundle, it has to prove its own
identity to the server. Kubernetes provides two types of authentication
tokens:

SPIRE in Kubernetes

SPIRE Agents in Kubernetes

Service Account Tokens (SATs)1.

Projected Service Account Tokens (PSATs)2.

118

Service Account Tokens are not ideal for security, because they remain
valid forever and have unlimited scope. Projected Service Account
Tokens are much more secure, but they do require a recent version of
Kubernetes and a special feature flag to be enabled. SPIRE supports
both SATs and PSATs for node attestation.

SPIRE Server interacts with Kubernetes in two ways. First, whenever
its trust bundle changes, it has to post the trust bundle to a
Kubernetes ConfigMap. Second, as agents come online, it has to
validate their SAT or PSAT tokens using the TokenReview API. Both of
these are configured through SPIRE plugins and require relevant
Kubernetes API privileges.

The SPIRE Server can run completely in Kubernetes, alongside the
workloads. However, for security, it might be desirable to run it on a
separate Kubernetes cluster, or standalone hardware. That way, if the
primary cluster is compromised, the SPIRE private keys are not at risk.

Fig. 6.9: SPIRE Server on the same cluster as workloads.

SPIRE Server in Kubernetes

119

Fig. 6.10: SPIRE Server on a separate cluster for security.

The SPIRE Agent includes a Kubernetes Workload Attestor plugin. This
plugin first uses system calls to identify the workload’s PID. Then, it
uses local calls to the Kubelet to identify the workload’s pod name,
image, and other characteristics. These characteristics can be used as
selectors in registration entries.

A SPIRE extension called the Kubernetes Workload Registrar can
automatically create node and workload registration entries, acting as
a bridge between the Kubernetes API server and the SPIRE Server. It
supports several di�erent methods of identifying running pods and has
some flexibility in the entries it creates.

For workloads that haven’t yet been adapted to use the Workload API
(see section Native SPIFFE support in Chapter 7: Integration with
others), Kubernetes makes it easy to add side-cars that do. A side-car
could be a SPIFFE-aware proxy like Envoy. Alternatively, it could be a

Kubernetes workload attestation

Automatic Kubernetes registration entries

Adding side-cars

120

side-car developed alongside SPIRE called "SPIFFE Helper" which
monitors the Workload API and reconfigures the workload when its
SVID changes.

Fig. 6.11: Workloads in a k8s cluster deployed along with side-car containers.

When the number of SPIRE Agents connected to the server grows, it
also puts more load on the server, the data store, and the network
itself. Multiple factors contribute to the load, including the number of
nodes and workloads per node, and how often you rotate keys. Using
JWT-SVIDs with the nested SPIRE model, public keys need to be kept
in sync, which would increase the amount of information that needs to
be transferred between the agent and server.

We didn't want to put specific performance requirements or
recommendations for the number of workloads per agent or the
number of agents per server since all the data a) depends on the
hardware and network characteristics, and b) changes fast. Just as an

SPIRE Performance Considerations

121

example, one of the latest releases improved the data's performance
by 30%.

As you've learned in previous chapters, SPIRE Agents continuously
communicate with a server to get any new changes such as SVIDs for
new workloads or updates to trust bundles. During each
synchronization, there are multiple data store operations. By default,
synchronization time is 5 seconds, and if that is producing too much
pressure on your system, you can increase it to a higher value to
address these concerns.

Very short SVID TTLs mitigates security risk, but if you use a very short
TTL, be prepared to see additional load to your SPIRE Server as the
number of signing operations increases in proportion to rotation
frequency.

Another critical factor a�ecting your system performance could be the
number of workloads per node. If you add a new workload to all nodes
in your system, that would suddenly produce a spike and a load on the
whole system.

If your system relies heavily on JWT-SVID usage, bear in mind that
JWT-SVIDs are not preemptively generated on the agent side and need
to be signed as requested. This may put extra load on the SPIRE Server
and Agent, and increase latency when they are overloaded.

There are various attestor plugins that SPIRE makes available for both
node and workload attestation. The choice of which attestor plugin to
use depends on the requirement for attestation, as well as the
available support that the underlying infrastructure/platform provides.

Attestor Plugins

122

For workload attestation, this largely depends on the type of
workloads being orchestrated. For example, when using a Kubernetes
cluster, a Kubernetes workload attestor would be appropriate, and
likewise an OpenStack Attestor for an Openstack platform.

For node attestation, it is important to determine the requirements for
security and compliance. There are sometimes requirements to
perform the geofencing of workloads. In these scenarios, using a node
attestor from a cloud provider that can assert that would provide
those guarantees.

In highly regulated industries, the use of hardware-based attestation
may be required. These mechanisms usually depend on the underlying
infrastructure to provide support, such as APIs or Hardware modules
like a Trusted Platform Module (TPM). This can include the
measurement of the state of the system software, including firmware,
kernel version, kernel modules, and even contents of the filesystem.

When working in a cloud environment, it is considered a best practice
to verify your node’s identity against metadata provided by the cloud
provider. SPIRE provides a simple way to do this with custom node
attestors designed specifically for your cloud. Most cloud providers
assign an API that can be used to identify the API caller.

Designing attestation for di�erent cloud platforms

123

Fig. 6.12: Node Attestor architecture and flow.

Node Attestors and Resolvers are available for Amazon Web Services
(AWS), Azure, and Google Cloud Platform (GCP). Node Attestors for
cloud environments are specific to that given cloud. The attestor’s
purpose is to attest the node before issuing an identity to the SPIRE
Agent running on that node.

Once an identity has been established, the SPIRE Server may have a
Resolver Plugin installed which allows additional selectors to be
created that match against the node’s metadata. The available
metadata is cloud-specific.

On the opposite spectrum, if a cloud provider does not provide the
ability to attest the node, it is possible to bootstrap with a join token.
However, this provides a very limited set of assurances depending on
the process through which this is done.

SPIRE Server supports two di�erent ways to add registration entries:
via a command-line interface or a Registration API (that allows admin-

Management of Registration Entries

124

only access). SPIRE needs registration entries to operate. One option is
for an administrator to manually create them.

Fig. 6.13: Workload manual registration.

A manual process won't scale in case of large deployments or when
the infrastructure is growing fast. Also, any manual process is error-
prone and may not be able to track all the changes.

Using an automated process to create registration entries using the
SPIRE API is a better choice for deployments with a large number of
registration entries.

125

Fig. 6.14: An example of automatically creating workload registration entries using
an "Identity Operator" that communicates with the Workload Orchestrator.

Whatever design and architectural decisions you make will a�ect the
threat model of the whole system, and possibly other systems that
interact with it.

Here are some important security considerations and the security
implications you should consider when you are in the design stage.

What is the structure of your PKI, how you define your trust domains
to establish security boundaries, where you keep your private keys,

Factoring Security Considerations
and Threat Modeling

Public Key Infrastructure (PKI) design

126

and how often they are rotated, are key questions you need to ask
yourself at this point.

Fig. 6.15: An example SPIRE deployment with three trust domains, each of which
uses a di�erent corporate Certificate Authority, each of which uses the same Root
Certificate Authority. In each layer, certificates have a shorter TTL.

Each organization will have a di�erent certificate hierarchy because
each organization has di�erent requirements. The diagram above
represents one potential certificate hierarchy.

127

TTL, revocation, and renewal

When dealing with PKI, questions around certificate expiry, re-
issuance, and revocation always surface. Several considerations can
influence the decisions made here. These include:

Blast radius

During the PKI design phase, it is very important to consider how the
compromise of one of the components will a�ect the rest of the
infrastructure. For instance, if your SPIRE Server keeps keys in memory
and the server gets compromised, all the downstream SVIDs need to
be canceled and reissued. To minimize the impact of such an attack,
you may design SPIRE infrastructure to have multiple trust domains for
di�erent network segments, Virtual Private Clouds, or cloud providers.

Performance overhead for document expiry/re-issuance — how
much performance overhead can be tolerated. The shorter the
TTL, the higher the performance overhead.

•

The latency of delivering documents — The TTL must be longer
than the expected delivery latency of the identity documents to
ensure that services do not have gaps in authenticating
themselves.

•

PKI Ecosystem Maturity — Are there revocation mechanisms in
place? Are they maintained and kept up to date?

•

Risk Appetite of the organization — If the revocation is not
enabled, what is the acceptable amount of time where an identity
can be valid if it has been compromised and detected.

•

The expected lifetime of objects — TTL should not be set to too
long a time, based on the expected lifetime of objects.

•

128

Keep your private keys secret

What is important is where you keep your keys. As you might have
learned earlier, SPIRE has a notion of a Key Manager which manages
CA keys. If you are planning to make SPIRE Server a root in your PKI,
you probably want to have persistence of your root key, but storing it
on the disk is not a good idea.

A solution for storing the SPIRE keys might be a software or hardware
Key Management Service (KMS). There are standalone products that
function as a KMS, as well as built-in services for each of the major
cloud providers.

Another possible design strategy to integrate SPIRE with existing PKI is
to use the SPIRE Upstream Authority plugin interface. In this case, the
SPIRE Server signs its intermediate CA certificate by communicating
with existing PKI using one of the supported plugins.

We intentionally removed the SPIRE Server’s data store from our
threat model in Chapter 4. The data store is where SPIRE Server
persists dynamic configuration such as registration entries and identity
mapping policies that are retrieved from the SPIRE Server APIs. SPIRE
Server data store supports di�erent database systems which it can
use as the data store. The compromise of the data store would allow
the attacker to register the workload on any node and potentially the
node itself. Attackers would also be able to add keys to the trust
bundle and get into the trust chain of downstream infrastructure.

Another possible surface for attackers is a denial of service attack on
the database or SPIRE Server connectivity to the database, which
would lead to denial of service to the rest of the infrastructure.

When you consider a design with any database for SPIRE Server
infrastructure in production, you won’t likely use the model where the

SPIRE data store security considerations

129

database process coexists on the same host with the server. Though
the model with limited access to the database, and co-hosting it with
the server significantly limits the attack surface, it is very hard to scale
in a production environment.

Fig. 6.16: Typically the SPIRE Server data store runs on remotely over a network
connection for availability and performance reasons, but this presents a security
challenge.

130

For availability and performance reasons, the SPIRE data store will
typically be a network connected database. But you should consider
the following:

These are relevant questions that need to be taken into consideration
since how the SPIRE Server connects to the database determines
greatly how secure the whole deployment is. In the case of using TLS
and password-based authentication, the SPIRE Server deployment
should rely on a secrets manager or KMS to keep the data secure.

In some deployments, you may need to add another lower-level meta
PKI infrastructure that will allow you to secure communication with all
low-level dependencies for the SPIRE Server, including your
configuration management or deployment software.

The way you distribute and deploy components of your SPIRE
ecosystem, and its configuration in your environment might have
severe consequences for your threat model and the whole system's
security model. It is the low-level dependency not only for SPIRE but
for all security systems you have, so here we'll focus only on what is
specific to SPIFFE and SPIRE.

If this is a shared database with other services, who else has
access to it and manages it?

•

How will the SPIRE Server authenticate to the database?•
Does the database connection allow TLS-protected secure
communication?

•

SPIRE Agent configuration and trust bundle

131

Trust bundle

There are di�erent ways to deliver the agent's bootstrap trust bundle.
This is the trust bundle that the agent uses when initially starting up,
in order to authenticate the SPIRE Server. If an attacker can add keys
to the initial trust bundle and perform a man-in-the-middle attack, it
will perform the same attack on workloads because they receive SVID
and trust bundle from the victim agent.

Configuration

The SPIRE Agent configuration also needs to be kept secure. If an
attacker can modify this configuration file, then they could point it at a
compromised SPIRE Server and control the agent.

Asserting trust through multiple independent mechanisms provides a
greater assertion of trust. The node attestation you choose might
significantly impact your SPIRE deployment's security and shift the
root of trust for it toward another system. When deciding what type of
attestation to use, you should incorporate it into your threat model
and review the model every time something changes.

For example, any other proof-of-possession-based attestation will shift
the root of trust, so you want to make sure the system you have as a
lower dependency meets your organization’s security and availability
standards.

When designing a system with an attestation model using a join token,
carefully evaluate operation procedures of adding and using tokens,
whether by operator or provisioning system.

E�ects of node attestor plugins

132

Both SPIRE Server and Agent support health checks and di�erent
types of telemetry. It might not be immediately apparent that enabling
or misconfiguration of health checks and telemetry may increase the
attack surface for the SPIRE infrastructure. The SPIFFE and SPIRE
threat models assume that the agent only exposes the Workload API
interface over the local Unix socket. The model doesn't consider that
misconfigured (or intentionally configured) health check service
listening not on the localhost might expose the agent to potential
attacks such as DoS, RCE, and memory leak. It would be best to take
similar precautions when choosing the telemetry integration model
because some of the telemetry plugins (e.g. Prometheus) might expose
additional ports.

Telemetry and health checks

133

SPIFFE is designed from the ground-up to be pluggable and extensible,
so the topic of integrating SPIFFE and SPIRE with other software
systems is a broad one. The architecture of a given integration is
beyond the scope of this book. Instead, this chapter intends to capture
some common integrations that are possible along with a high-level
overview, as well as a strategy for conducting integration work.

There are many options available when considering how to adapt the
software to use SVIDs. This section describes a few of those options,
and considerations that go along with them.

This approach requires modifying existing services to make them
SPIFFE aware. It is the preferred choice when the modifications
required are minimal, or can be introduced in a common library or
framework used across application services. Native integration is the
best approach for data plane services that are sensitive to latency, or
services that want to utilize identity at the application layer. SPIFFE

7. Integrating with
Others

This chapter explores how SPIFFE and SPIRE integrate with your
environment.

Enabling Software to Use SVIDs

Native SPIFFE support

134

provides libraries such as GO-SPIFFE for Go programming language
and JAVA-SPIFFE for the Java programming language that facilitate the
development of SPIFFE-enabled workloads.

When building software in languages with supported SPIFFE libraries,
this is often the most straightforward way to utilize SPIFFE. The Go
and Java libraries mentioned above have examples using SPIFFE with
gRPC and HTTPS clients and servers.

That said, it should be noted that you are not limited to the choices of
Java and Go languages. These libraries are implemented on top of the
open specification. At the time of writing, community development
e�orts are underway for SPIFFE libraries in Python, Rust, and C
programming languages.

Often, the refactoring cost is deemed too high, or the service is
running a third-party code that can not be modified. In these
situations, it is often a pragmatic choice to front the application with a
proxy that supports SPIFFE. Depending on the application deployment
model, it could be a standalone proxy or a set of colocated proxies.
Colocated proxies have the advantage that tra�c between the proxy
and the unsecured service remains local — if standalone proxies are in
use, security between the proxy and the application must still be
accounted for.

Envoy is a popular choice for this, and Ghostunnel is another good
option. While other proxies such as NGINX and Apache can also work,
their SPIFFE-related functionality is limited.

Ghostunnel is an L3/L4 proxy that enjoys fully native support of the
entire SPIFFE specification set, including support for the SPIFFE
Workload API and Federation. For applications that require L7 features,
Envoy is recommended. While Envoy does not natively support the
SPIFFE Workload API, SPIRE implements the Secret Discovery Service

SPIFFE-aware proxies

135

API (or SDS API) which is an Envoy API used to retrieve and maintain
certificates and private keys.

Fig. 7.1: A high-level diagram of two Envoy proxies sitting between two services
using the SPIRE Agent SDS implementation to establish mutual TLS.

By implementing the SDS API, SPIRE can push TLS certificates, private
keys, and trusted CA certificates directly into Envoy. SPIRE then takes
care of rotating the short-lived keys and certificates as required,
pushing updates to Envoy without the need for a restart.

Service mesh

L7 proxies such as Envoy can perform many functions above and
beyond SPIFFE security. For example, service discovery, request
authorization, and load balancing are all features that Envoy brings to
the table. It can be particularly attractive to o�oad this kind of
functionality to a proxy in environments where using a shared library is
prohibitive (e.g. when applications are written in many di�erent
languages, or are not able to be modified). This approach also pushes
proxy deployment towards the colocated model, in which every
application instance has a dedicated proxy running next to it.

This, however, creates an additional problem: how to manage all of
these proxies?

136

A service mesh is an opinionated deployment of a proxy fleet and an
associated proxy control plane. They typically allow for automatic
injection and configuration of colocated proxies as workloads are
deployed, and provide ongoing management of these proxies. By
o�oading many platform concerns to a service mesh, applications can
be made agnostic of these functions.

Most service mesh implementations, to date, leverage SPIFFE
authentication for service-to-service tra�c. Some use SPIRE to
accomplish this, and others have implemented product-specific
SPIFFE identity providers.

For cases where workloads do not natively support the SPIFFE
Workload API, but still support using certificates for authentication, a
helper program running alongside the workloads can work to bridge
the gap. One example of such a helper program is the SPIFFE Helper
(see: https://github.com/spiffe/spiffe-helper/). The SPIFFE Helper fetches
SVIDs from the SPIFFE Workload API and writes them to disk where
they can be picked up by the application. The SPIFFE Helper can
continue to run, ensuring that certificates on disk are continually
updated as they rotate. When an update does occur, the helper can
signal the application (or run a configurable command) such that the
changes are picked up by the running application.

Many o�-the-shelf applications that support TLS can be configured to
use SPIFFE this way. The SPIFFE Helper repository has examples of
configuring MySQL and PostgreSQL. Many web servers such as Apache
HTTPD and NGINX can be similarly configured. That is also useful for
client software, which can only be configured to utilize certificates on
disk.

Helper programs

https://github.com/spiffe/spiffe-helper/

137

It is important to note that this gives less flexibility than native SPIFFE
integration since, in particular, it may not allow the same granularity of
trust configuration. For example, when using SPIFFE Helper to
configure Apache HTTPD for mutual TLS, it is not possible to configure
mod_ssl to only accept clients with particular SPIFFE IDs.

Since SVIDs are based on well-known document types, it is relatively
common to encounter software that supports the document type but
isn’t necessarily SPIFFE-aware per se. The good news is that this is a
relatively expected condition and that SPIFFE/SPIRE have been
designed to handle this case well.

Many non-SPIFFE systems support using TLS (or mutual TLS) but rely
on certificates having identity information in either the common name
(CN) of the certificate subject or a DNS name of the Subject
Alternative Name (SAN) extension. SPIRE supports issuing X.509
certificates with specific CN and DNS SAN values that can be specified
on a workload-by-workload basis (as part of a registration entry).

This functionality is an important detail, as it allows for the use of
X509-SVIDs with software that doesn’t directly understand how to use
SPIFFE IDs. For example, HTTPS clients often expect the presented
certificate to match the DNS name of the request. In another example,

openssl•
x509curl•
grpcurl•

Using SVIDs with Software That Is
Not SPIFFE-aware

X509-SVID dual-use

138

MySQL and PostgreSQL can use the Common Name for identifying an
mutual TLS client. By leveraging this SPIRE feature, and the flexibility
a�orded by SPIFFE in general, these use cases can be accommodated
with the very same SVIDs that are used for SPIFFE use cases as well.

Similar to the way that X509-SVIDs can be used for SPIFFE
authentication as well as for more traditional X.509 use cases, JWT-
SVIDs also support this kind of duality. While JWT-SVIDs do use the
standard subject (or `sub`) claim to store the SPIFFE ID, the validation
methodology is similar to and compatible with OpenID Connect (or
OIDC).

More specifically, the SPIFFE Federation API exposes public keys via a
JWKS document served by an HTTPS endpoint, which is the same
mechanism used to obtain public keys for OIDC validation. As such,
any technology that supports the OIDC Identity Federation will also
support accepting JWT-SVIDs, regardless of whether or not they’re
SPIFFE-aware.

One example of an integration supporting this identity federation is
Amazon Web Services (AWS) Identity and Access Management (IAM). By
configuring IAM in an AWS account to accept identities from SPIRE as
an OIDC identity provider, it becomes possible to use JWT-SVIDs from
the SPIFFE Workload API to assume AWS IAM roles. This is particularly
powerful when the workload which needs to access AWS resources is
not running in AWS, e�ectively negating the need to store, share, and
manage long-lived AWS access keys. For a detailed example of how to
accomplish this, please see the AWS OIDC Authentication tutorial (see:
https://spiffe.io/spire/try/oidc-federation-aws/) on the SPIFFE website.

JWT-SVID dual-use

https://spiffe.io/spire/try/oidc-federation-aws/

139

Once SPIFFE exists as a universal identity foundation in your
ecosystem and is integrated with your applications, it might be a good
time to think about what to build on top. In this section, we want to
cover what is possible to build on top of SPIFFE and SPIRE. It is not
necessarily that the project has all the building blocks to make
everything work right out of the box. Some integration pieces will need
to be implemented to make it happen, and the details on exactly how
it can be accomplished will vary from deployment to deployment.

SPIFFE can provide verifiable proof of identity to other systems which
is an advantage to the following components:

You can use SVIDs to ensure secure client-server communication for
these systems. However, you can also extend all these components to
enriching the data with the SPIFFE ID. Doing so comes with a variety of
advantages, such as the ability to correlate events across multiple
types of platforms and runtimes. It can even help to identify
applications and services that still do not use SPIFFE identities, or
spot operational anomalies and attacks regardless of which corner of
the infrastructure they may be occurring in.

Ideas for What You Can Build on
Top of SPIFFE

Logging, monitoring, observability, and SPIFFE

Metrics infrastructure•
Logging infrastructure•
Observability•
Metering•
Distributed tracing•

140

For any security system, like the one you build on top of SPIRE, logs
are not just information that help developers and operators
understand what happened with the system. Any security systems logs
are evidence of what is happening, so having a centralized location in
which logs are stored is a good idea. In case of any security incident,
such information is highly valuable for forensics analysis.

SPIFFE can help augment audit data by providing non-repudiation
through the use of authenticated calls to centralized auditing systems.
For example, by using an X509-SVID and mutual TLS when establishing
sessions to auditing systems, we can be sure of where the log line
came from — attackers cannot simply manipulate labels or other data
that is being sent across.

Certificate Transparency (CT) helps spot attacks on certificate
infrastructure by providing an open framework for monitoring and
auditing X.509 certificates in nearly real-time. Certificate Transparency
allows detecting certificates that have been maliciously acquired from
a compromised certificate authority. It also makes it possible to
identify certificate authorities that have gone rogue and are maliciously
issuing certificates. To learn more about Certificate Transparency, read
the introductory documentation (see: https://www.certificate-
transparency.org/what-is-ct).

There are di�erent possibilities for the integration of SPIRE with
Certificate Transparency. With this integration, it is possible to log
information about all certificates issued by your system and protect it
with a special cryptographic mechanism known as Merkle Tree Hashes
to prevent tampering and misbehavior.

Another method you might consider is to enforce Certificate
Transparency across all your systems. That would prevent establishing

Auditing

Certificate transparency

https://www.certificate-transparency.org/what-is-ct

141

TLS and mutual TLS connection with applications and services that do
not have certificate information logged in the certificate transparency
server.

Integration with CT is beyond the scope of the book. Check the
SPIFFE/SPIRE communities for more information and the latest
updates.

Most of the coverage on the intended use of SPIFFE has been given to
securing the communications between software systems at runtime.
However, it is also critical to protect software during the stages before
it is deployed. Supply chain compromises a potential attack vector. For
that reason, it is desirable to protect the integrity of the software
supply chain to prevent malicious actors from introducing backdoors
or vulnerable libraries into the code. Verification of the provenance of
software artifacts and the set of steps performed during the pipeline is
a way to verify that software has not been tampered with.

You can consider using SPIFFE to provide the root of trust for signing.
It can also be used for issuing identities to the software components
of supply chain systems. There are several ways it can work in
conjunction with complementary software like The Update Framework
(TUF) or an artifact signing service like Notary, or leveraged along with
supply chain logs like In-Toto.

It is possible to integrate SPIRE with supply chain components at two
levels.

First, you may use it to identify the di�erent elements of this supply
chain system to secure the machinery and the control plane. Second,
to ensure that only binaries of known provenance are issued identities
by customizing selectors. As an example of the latter, at a very
rudimentary level, such attributes can be passed as labels into a

Supply chain security

142

container image using existing docker selectors or by developing a
workload attestor that can check for supply chain metadata.

The primary focus of SPIFFE and SPIRE architecture is on software
identity. It doesn't take the user's identity into account because the
problem is already considered to be well-solved, and significant
di�erences exist in how identity is issued to humans vs software. That
said, it doesn't mean you cannot distribute SPIFFE identities to users.

How should users interact in a SPIFFE-enabled ecosystem? Remember
that SPIFFE stands for Secure Production Identity Framework for
Everyone. While most of this book focuses on identity for software, it
is equally valid and even desirable for SPIFFE verifiable identities
(SVIDs) to be given to users. This way, everything that workloads can
do with SVIDs can be done by people as well, such as mutual TLS
access to services. This can be especially useful for developers who
are building software and need access to the same resources that
their software will be using once deployed.

Just as the SPIFFE spec is open-ended about the scheme of SPIFFE
IDs, it is up to you how you would like to represent humans. It may be
enough to have your username as the SPIFFE ID path, e.g.
“spi�e://example.com/users/zero_the_turtle”. Alternatively, you could
create a distinct trust domain for users versus workloads, e.g.
“spi�e://users.example.com/zero_the_turtle”.

In an ideal scenario, your existing SSO provider is capable of producing
JWTs for your users, as is the case for OIDC identity providers. In this
case, if you can configure your SSO provider to use a SPIFFE ID for the

Ideas to Integrate SPIFFE for Users

Verifiable identity for users

143

sub claim, you might not need to do any extra work to produce SVIDs
for your users.

If you are unable to get SPIFFE JWTs from your identity provider
directly but you do have the means to get a verifiable identity token,
you could instead utilize a custom SPIRE attestor that accepts an
identity token from your provider as a rudimentary means of
attestation.

Fig. 7.2: An example of using an OIDC ID token for SPIRE authentication.

If none of the above situations apply, you can always build a distinct
service integrated into your existing SSO solution which can produce
SVIDs for users based on their authenticated session. Check out the
SPIFFE website for sample projects (see:
https://github.com/JackOfMostTrades/spiffe-user-demo).

Using SPIFFE and SPIRE with SSH

OpenSSH supports authentication with Certificate Authorities (CAs)
and certificates (see: https://github.com/openssh/openssh-
portable/blob/master/PROTOCOL.certkeys). Although the format of OpenSSH
certificates is di�erent from X.509, one can build a service for creating
SSH certificates using SVIDs as authentication. This allows you to
utilize your SPIFFE identities for SSH as well.

https://github.com/JackOfMostTrades/spiffe-user-demo
https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.certkeys

144

For users that need SSH access to workloads in your ecosystem, this
model provides ephemeral, short-lived, auditable credentials for SSH
access and also provides a single control-point with which you enforce
access control policies or multi-factor authentication.

This also allows the workloads to retrieve server-side (aka “host”) SSH
certificates that allow the workload to authenticate itself to the user.
Using this certificate, users no longer need to have their SSH
connection interrupted with a question about trusting a server’s host
key on the first connection.

Fig. 7.3: Using SVIDs to bootstrap SSH certificates.

Microservice UIs

While most of this book is concerned with workload-to-workload
authentication, there is often also a need for users to authenticate to
workloads. If the user is doing so via a CLI or other desktop tool then
mutual TLS with a user’s SVIDs can be used. However, many
microservices will also want to host some sort of browser-based user
interface. This may be because developers are accessing a purpose-
built administrative or management interface for their service, or
consumers may be using a tool like Swagger UI (see:
https://github.com/swagger-api/swagger-ui)

https://github.com/swagger-api/swagger-ui

145

 to explore and experiment with a service’s API.

Providing a good experience for services with a browser-based user
interface requires bridging a browser-friendly form of authentication
and SPIFFE mutual TLS authentication. The easiest way to achieve this
is to have one API port that uses mutual TLS and another API port that
accepts a browser-friendly authentication method such as an existing
web-based SSO mechanism or OAuth2/OIDC.

A post-authentication filter for requests on the secondary port should
provide a translation layer between the browser-based authentication
principal and a corresponding SPIFFE ID. If you have set up a
mechanism for users to get SVIDs directly, as described above, then
the same translation should be used here. This way, the underlying
application is agnostic to the specific authentication mechanism used,
so web-based requests made by a given user are functionally
equivalent to the same request made via mutual TLS using that user’s
SVID.

146

SPIFFE focuses on the issuance and interoperability of secure
cryptographic identity for software, but as mentioned previously in this
book, it does not directly solve for the use or consumption of these
identities.

SPIFFE frequently acts as the cornerstone of a strong authorization
system, and SPIFFE IDs themselves play an important part in this
story. In this section, we discuss options for using SPIFFE to build
authorization.

8. Using SPIFFE
Identities to Inform
Authorization

This chapter explains how to implement authorization policies
that use SPIFFE identities.

Building Authorization on Top of
SPIFFE

147

Once a workload has a secure cryptographic identity, it can prove its
identity to other services. Proving identity to an outside service is
called authentication. Once authenticated, that service can choose
what actions are permissible. This process is called authorization.

In some systems, any entity that is authenticated is also authorized.
Because SPIFFE automatically grants identities to services as they
startup, it is vital to clearly understand that not every entity that can
authenticate itself should be authorized.

There are many ways authorization can be modeled. The simplest
solution is to simply have an allowlist of authorized identities attached
to each resource. However, as we explore this, we will notice several
limitations with the allowlist approach when dealing with the scale
and complexity of an ecosystem. We will look at two more
sophisticated models, Role-Based Access Control (RBAC) and
Attribute-Based Access Control (ABAC).

In small ecosystems, or when just getting started with SPIFFE and
SPIRE, it’s sometimes best to keep things simple. For example, if you
only have a dozen identities in your ecosystem, access to each
resource (i.e. service, database) can be managed through maintaining a
list of identities with access.

ghostunnel server --allow-uri spiffe://example.com/blog/web

Authentication Vs Authorization
(AuthN Vs AuthZ)

Authorization Types

Allowlists

148

Here the ghostunnel server is explicitly authorizing access based on
the identity of clients alone.

The advantage of this model is that it’s easy to understand. As long as
you have a limited number of identities that don’t change, it is easy to
define and update access control on resources. However, scalability
can become a hurdle. If an organization has hundreds or thousands of
identities, maintaining allowlists quickly becomes unmanageable. For
instance, every time a new service is added, it might require the
operations team to update many allowlists.

In Role-Based Access Control (RBAC), services are assigned to roles,
and then access control is designated based on roles. Then, as new
services are added, only a relatively small set of roles need to be
edited.

While it is possible to encode a service’s role into its SPIFFE ID, this is
generally a poor practice because the SPIFFE ID is static, while the
roles it is assigned to might have to change. Instead, it’s best to use an
external mapping of SPIFFE IDs to roles.

Attributed-Based Access Control (ABAC) is a model where
authorization decisions are based on attributes that are associated
with a service. In conjunction with RBAC, ABAC can be a powerful tool
for strengthening authorization policies. For example, to meet legal
requirements it may be necessary to limit access to a database to
services from a particular region. The region information can be an
attribute in an ABAC model that is used for authorization and encoded
in a SPIFFE ID scheme.

Role-Based Access Control (RBAC)

Attribute-Based Access Control (ABAC)

149

The SPIFFE specification doesn't specify or limit what information you
can or should encode into a SPIFFE ID. The only limitations you need
to be aware of come from the maximum length SAN extension and
what characters you’re are allowed to use.

To make an authorization decision on the SPIFFE identity substrings,
we must define what each part of the identity means. You can design
your scheme in the format where you encode information by the order.
In this case, the first part might represent a region, the second
environment, and so on.

Below is an example of the scheme and identity:

spiffe://trust.domain.org/<region>/<dev,stage,prod>/<organization>/<workloa
d name>

Designing SPIFFE ID Schemes for
Authorization

Use extreme care when encoding authorization metadata
into your organization's SPIFFE ID format. The examples
below illustrate how to do this, since we did not want to
introduce additional authorization concepts.

A Word of Warning

SPIFFE scheme examples

150

Fig. 8.1: Components of a SPIFFE ID and potential meanings at one organization.

An identity scheme can not only take the shape of a series of fixed
fields but can take a more complex structure, depending on the needs
of an organization. A common example we can look at is workload
identities across di�erent orchestration systems. For example, in
Kubernetes and OpenShift, the naming conventions of workloads are
di�erent. The following illustration shows this as an example. You may
notice that the fields not only refer to di�erent attributes and objects
but that the structure of the SPIFFE ID also depends on the context.

The consumer can distinguish the structure of the scheme by
observing the prefix of the identity. For example, an identity with the
prefix “spi�e://trust.domain.org/Kubernetes/…” would be parsed as a
Kubernetes identity according to the scheme structure in the following
figure.

151

Fig. 8.2: Illustration of another potential SPIFFE ID scheme.

More often than not, organizations change, and so will the
requirements of the identity scheme. This could be due to the
organizational restructuring, or even a shift in the technology stack. It
might be hard to predict how di�erent your environment could be in a
few years from now. Therefore, when designing a SPIFFE ID scheme, it
is crucial to think about potential changes in the future and how these
changes would a�ect the rest of the systems based on the SPIFFE
identity. You should think about how to incorporate backward and
forward compatibility into the scheme. As we already mentioned

Changing schemes

152

before, with an ordered scheme, you only need to add new entities to
the end of your SPIFFE ID; but what if you need to add something in
the middle?

One method is with a scheme based on key-value pairs, and another
method is one that we’re all too familiar with: versioning!

Scheme based on key-value pairs

We notice that the above scheme designs are all ordered. The scheme
is evaluated by looking at the prefix of the identity and determining
how to evaluate the su�x that follows. However, we note that because
of this ordering, it is di�cult to easily add new fields to the scheme.

Key-value pairs, by their nature, are unordered, and this is one way to
easily extend fields into an identity scheme without much change. For
example, you can use key-value pairs with a known delimiter, e.g.
column ":" character within the identity. In this case, the identity above
might be encoded in the following way:

spiffe://trust.domain.org/environment:dev/region:us/organization:zero/name:
turtle

Because consumers of the identity process it into a set of key-value
pairs, more keys can be added without changing the underlying
structure of the scheme. There is also the possibility that SPIFFE can
support the inclusion of key-value pairs into SVIDs in future.

As usual, trade-o�s between structured and unstructured data types
should be considered.

Versioning

One of the possible solutions here is to incorporate versioning into the
scheme. The version could be the first item and the most critical part

153

of your scheme. The rest of the systems need to follow the mapping
between versions and encoded entities when dealing with SPIFFE IDs
data.

spiffe://trust.domain.org/v1/region/environment/organization/workload
v1 scheme:
0 = version
1 = region
2 = environment
3 = organization
4 = workload

spiffe://trust.domain.org/v2/region/datacenter/environment/organization/wor
kload
v2 scheme:
0 = version
1 = region
2 = datacenter
3 = environment
4 = organization
5 = workload

In SPIFFE, a single workload can have multiple identities. However, it’s
the responsibility of your workload to decide which identity to use. To
keep authorization simple, it’s best to first have one identity per
workload and add more if necessary.

Let’s go through an example of a service that workloads may wish to
talk to, Hashicorp Vault. We will go through an RBAC example and an

Authorization Examples with
HashiCorp Vault

154

ABAC example, and cover some of the gotchas and considerations
when performing authorization with SPIFFE/SPIRE.

Vault is a secret store: administrators can use it to safely store secrets
such as passwords, API keys, and private keys that services might
need. Since many organizations still need to store secrets securely,
even after using SPIFFE to provide secure identities, using SPIFFE to
access Vault is a common request.

spiffe://example.org/<region>/<dev,stage,prod>/<organization>/<workload
name>

Vault handles both authentication and authorization tasks for identity
when dealing with client requests. Like many other applications that
handle the management of resources (in this case, secrets), it has a
pluggable interface into various mechanisms for authentication and
authorization.

In Vault, this is through the TLS Certificate Auth Method (see:
https://www.vaultproject.io/api/auth/cert) or JWT/OIDC Auth Method (see:
https://www.vaultproject.io/api-docs/auth/jwt) which can be configured to
recognize and validate JWTs and X509-SVIDs generated from SPIFFE.
To enable Vault to use SPIFFE identities to be used, the trust bundle
needs to be configured with these pluggable interfaces so that it can
authenticate the SVIDs.

This takes care of authentication, but we still need to configure it to
perform authorization. To do that, a set of authorization rules need to
be put into place for Vault to decide which identities can access
secrets.

Configuring Vault for SPIFFE identities

https://www.vaultproject.io/api/auth/cert
https://www.vaultproject.io/api-docs/auth/jwt

155

A SPIFFE RBAC example

For the following examples, we will assume that we are using the
X509-SVID. Vault allows the creation of rules, which can express which
identities can access which secrets. This usually consists of creating a
set of access permissions and creating a rule that ties it to access.

For example, a simple RBAC policy:

{
 "display_name": "medical-access-role",
 "allowed_common_names":
 ["spiffe://example.org/eu-de/prod/medical/data-proc-1",
 "spiffe://example.org/eu-de/prod/medical/data-proc-2"
],
 "token_policies": "medical-use",
}

This encodes a rule that states that if a client with identities
"spiffe://example.org/eu-de/prod/medical/data-proc-1", or
"spiffe://example.org/eu-de/prod/medical/data-proc-2" can gain access to a
set of permissions (“medical-use”), it will grant access to medical data.

In this scenario, we have granted these two identities access to the
secret. Vault takes care of mapping two di�erent SPIFFE IDs to the
same access control policy, which makes this RBAC rather than an
allowlist.

A SPIFFE ABAC example

In some cases, it is easier to design authorization policies based on
attributes, rather than roles. Typically, this is needed when there are
multiple di�erent sets of attributes that could individually match

https://www.vaultproject.io/api/auth/cert%23token_policies

156

policies, and it is challenging to create enough unique roles to match
each situation.

In line with the above example, we can create a policy that authorizes
workloads with a certain SPIFFE ID prefix:

{
...
 "display_name": "medical-access-role",
 "allowed_common_names":
 ["spiffe://example.org/eu/prod/medical/batch-job*"],
 "token_policies": "medical-use",
}

This policy states that all workloads with the prefix
spiffe://example.org/eu/prod/medical/batch-job would be authorized to
access the secret. This may be useful as batch jobs are ephemeral and
may be given a randomly assigned su�x.

Another example would be a policy with the following:

{
...
 "display_name": "medical-access-role",
 "allowed_common_names":
 ["spiffe://example.org/eu-*/prod/medical/data-proc"],
 "token_policies": "medical-use",
}

The desired e�ect of this policy is to state that only data-
proc workloads in any EU data center can access the medical secret.
Thus, if a new workload is started in a new data center in the EU, any
data-proc workload would be authorized to access the medical secrets.

https://www.vaultproject.io/api/auth/cert%23token_policies
https://www.vaultproject.io/api/auth/cert%23token_policies

157

Open Policy Agent (OPA) is a Cloud Native Computing Foundation
(CNCF) project that performs advanced authorization. Using a domain-
specific programming language called Rego, it e�ciently evaluates the
properties of an incoming request and determines what resources it
should be allowed to access. With Rego, it is possible to design
elaborate authorization policies and rules including ABAC and RBAC. It
can also take into account the properties of the connection that are
unrelated to SPIFFE, such as the user ID of an incoming request. The
Rego policies are stored in text files so they can be centrally
maintained and deployed through a continuous integration system, and
even unit tested.

Here is an example which encodes access to a certain database
service which should only be allowed by a certain SPIFFE ID.

allow Backend service to access DB service
allow {
 http_request.path == "/good/db"
 http_request.method == "GET"
 svc_spiffe_id == "spiffe://domain.test/eu-du/backend-server"
}

If more elaborate authorization policies need to be implemented, then
OPA is a great choice. The Envoy proxy integrates both with SPIRE and
OPA, so it is possible to get started right away without changing
service codes. To read more details about using OPA for authorization
please consult with OPA documentation.

Open Policy Agent

158

Authorization is an enormous and complex topic in its own right, far
beyond the scope of this book. However, like many other aspects of
the ecosystem that interacts with identity, it is useful to understand
the relationship of identity with authorization (and more broadly,
policy).

In this chapter, we’ve introduced several ways to think about
authorization using SPIFFE identities, as well as design considerations
related to identity. This will help better inform the design of your
identity solution to cater to the authorization and policy needs of your
organization.

Summary

159

The problems that SPIFFE and SPIRE solve are not new. Every
distributed system has to have some form of identity to be secure.
Web Public Key Infrastructure, Kerberos/Active Directory, OAuth, secret
stores, and service meshes are examples.

However, these existing forms of identity are not a good fit for
identifying internal services within an organization. Web PKI is
challenging to implement and also insecure for typical internal
deployments. Kerberos, the authentication component of Active
Directory, requires an always-online Ticket Granting Server and doesn't
have any equivalent attestation. Service meshes, secrets managers,
and overlay networks all solve portions of the service identity puzzle
but are incomplete. SPIFFE and SPIRE are currently the only complete
solution to the service identity problem.

9. Comparing SPIFFE
to Other Security
Technologies

This chapter compares SPIFFE to other technologies that solve
similar problems.

Introduction

160

Web Public Key Infrastructure (Web PKI) is the widely used method to
connect from our web browsers to secure web sites. It utilizes X.509
certificates to assert that the user is connecting to the website they
intend to visit. Since you are probably familiar with this model, it’s
reasonable to ask: why can’t we use Web PKI for service identity within
our organization?

In traditional Web PKI, certificate issuance and renewal were entirely
manual processes. These manual processes are a poor fit for modern
infrastructure, where service instances may dynamically grow and
shrink at any time. However, in the last few years, Web PKI has shifted
to an automatic certificate issuance and renewal process called
Domain Validation (DV).

In DV, the certificate authority sends a token to the certificate
requester. The certificate requester shares this token using an HTTP
server. The certificate authority accesses the token, verifies it, and
then signs the certificate.

The first problem with this arrangement is that internal services
frequently don’t have individual DNS names or IP addresses. If you
wanted to do mutual TLS between all services, then even the
clients would need DNS names to get certificates, which would be
challenging to configure. Assigning identities to multiple services
running on one host requires separate DNS names, which would also
be challenging to configure.

A more subtle problem is that anyone who could successfully respond
to requests for the token could successfully acquire a certificate. This
might be a di�erent service running on the same server, or even on a
di�erent server that can tamper with the local Layer 2 network.

Web Public Key Infrastructure

161

In general, while Web PKI works great for secure web sites on the
internet, it is not a good fit for service identity. Many internal services
that need certificates don’t have DNS names. The currently available
process for doing certificate validation is easily compromised if
attackers successfully infiltrate any services on local network.

Kerberos is an authentication protocol initially developed at MIT in the
late 1980s. Originally it was designed to allow for human-to-service
authentication using a centralized user database. Kerberos was later
expanded to support service-to-service authentication and the use of
machine accounts in addition to user accounts. The Kerberos protocol
itself is agnostic to the account database. However, Kerberos’s most
common usage is authentication in a Windows domain, using Active
Directory (AD) as the account database.

The core credential of Kerberos is called a ticket. A ticket is a
credential that can be used by a single client to access a single
resource. Clients get tickets by calling a Ticket Granting Service (TGS).
Clients need a new ticket for every resource it accesses. This design
leads to much more chatty protocols and decreases reliability.

All services have a trust relationship with the TGS. When a service
registers with the TGS, it shares key material, such as a symmetric
secret or a public key, with the TGS. TGS uses key material to create
tickets that authenticate access to the service. Rotating the key
material requires coordination between the service and the TGS. The
service must accept previous key material and remain aware of it so
that existing tickets remain valid.

Active Directory (AD) and Kerberos

162

In SPIRE, each client and resource will call the SPIRE Server once to
get its credentials (SVID), and all resources can authenticate those
credentials in the trust domain (and federated trust domains) without
any further calls to the SPIRE Server. SPIRE’s architecture avoids all
the overhead of getting a new credential for every resource that needs
to be accessed.

Authentication mechanisms based on PKI, such as SPIRE, make
credential rotation simpler since this coordination of key material
between services and a centralized authenticator does not exist.

Finally, it is worth noting that the Kerberos protocol tightly couples
services with hostnames, which complicates multiple services per host
and clusters. On the other hand, SPIRE easily supports multiple SVIDs
per workload and clusters. It is also possible to assign the same SVID
to multiple workloads. These properties provide a robust and highly
scalable approach to identity.

OAuth is a protocol designed to enable access delegation, and not
necessarily as a protocol for enabling authentication on its own. OIDC’s
primary purpose is to allow humans to allow a secondary website (or
mobile app) to act on their behalf against a di�erent primary website.
In practice, this protocol enables authentication of users on the
secondary website since the delegated access credential (an access
token in the OAuth protocol) is proof from the primary website that
the user authenticated against that website.

If the primary website includes user information or provides a way to
retrieve user information using an access token, a secondary website

How SPIRE mitigates the Kerberos and AD drawbacks

OAuth and OpenID Connect (OIDC)

163

may authenticate the user using the primary website’s token. OpenID
Connect, an opinionated flavor of OAuth, is a great example.

OAuth is designed for people and not for non-person entities. The
OAuth login process requires a browser redirect with interactive
passwords. OAuth 2.0 is similar to its predecessor and includes
support for non-person entities, usually by creating service
accounts (i.e. user identities representing workloads instead of people).
When a workload wants to obtain an OAuth access token to access a
remote system, it must use an OAuth client secret, password, or a
refresh token to authenticate to the OAuth provider and receive the
access token. Workloads should all have independent credentials to
enable a high degree of granularity of workload identities. The
management of these credentials quickly becomes complicated and
di�cult for elastic compute since each workload and identity must
register with the OAuth provider. Long living secrets introduce further
complexities when they must be revoked. Propagation of secrets in
your environment, due to rotation, reduces infrastructure mobility and,
in some cases, may present a vector of attack if developers manage
secrets manually.

The reliance on a pre-existing credential to identify a workload, such
as an OAuth client secret or refresh token, fails to resolve the bottom
turtle problem (as explained in Chapter 1). Leveraging SPIRE as the
identity provider in these instances permits the bootstrap credential or
bottom turtle’s issuance before contacting the OAuth infrastructure.
SPIRE significantly improves security since no long-lived static
credential needs to be co-deployed with the workload itself. SPIFFE
can be complimentary to OAuth. It removes the need to manage OAuth
client credentials directly — apps may use their SPIFFE ID to
authenticate to the OAuth provider as needed. Indeed, OAuth access
tokens can be SVIDs themselves, allowing users to authenticate to

How SPIFFE and SPIRE can mitigate OAuth and OIDC
complexity

164

services in a SPIFFE ecosystem in the same way as workloads. See the
integration with OIDC for more.

Secrets managers typically control, audit, and securely store sensitive
information (shared secrets, typically passwords) on behalf of a
workload or administrator. Some secrets managers can perform
additional functions such as encrypting and decrypting data. A
common feature found in many secrets managers is central storage,
known as a vault, which encrypts data at rest. Workloads must
individually authenticate to the vault before performing actions such
as secrets retrieval or data decryption.

A typical architectural challenge in deploying secrets managers is how
to securely store the credential used by the workload to authenticate
to the secrets manager itself. This is sometimes called credential zero,
the bootstrap credential, or, more broadly, the process of secure
introduction.

Using a secret manager dramatically improves the security posture of
systems that rely on shared secrets by providing a secure location by
which those secrets can be stored, retrieved, rotated, and revoked.
Heavy use, however, perpetuates the use of shared secrets rather than
using strong identities.

If you do need to use a secrets manager, it can be configured to
authenticate using SPIFFE certificates. This allows you to use the same
SPIFFE certificates for direct authentication between services and
retrieve secrets to talk to non-SPIFFE certificates.

Secrets Managers

How SPIFFE and SPIRE can be used to mitigate secrets
managers challenges

165

A service mesh aims to simplify communication between workloads by
providing automatic authentication, authorization, and enforcing
mutual TLS between workloads. A service mesh typically provides
integrated tooling that:

All the major service mesh packages include a native platform-specific
service authentication mechanism.

While a service mesh can function without a cryptographic identity
plane, weak forms of identity are inevitably created to permit service-
to-service communication and discovery. Service mesh in this
implementation does not provide a security function and also does not
resolve the existing root of trust identity issue discussed previously.

Many service mesh o�erings implement their cryptographic identity
planes or integrate with an existing identity solution to provide both
transit communication security and root of trust resolution. Most
service mesh o�erings implement SPIFFE or parts of it. Many service
mesh implementations have adopted partial implementations of the
SPIFFE specification (including Istio and Consul (see:
https://www.consul.io/)) and can be considered SPIFFE identity providers.
Some incorporate SPIRE as a component of their solution (i.e. Grey
Matter or Network Service Mesh).

Service Meshes

Identifies workloads.

Mediates communication between workloads, usually through a
proxy deployed adjacent to each workload (side-car pattern)

.

Ensures each adjacent proxy enforces a consistent authentication
and authorization policy (generally through an authorization policy
engine)

.

https://www.consul.io/

166

For example, Istio uses SPIFFE for node identification, but its identity
model is tightly coupled to and solely based on Kubernetes specific
primitives. There is no way to identify services in Istio based on
attributes outside of Kubernetes. IBM explains Why the current Istio
mechanism is not enough (see: https://developer.ibm.com/articles/istio-
identity-spiffe-spire/%23why-the-current-istio-mechanism-is-not-enough). This
presents a constraint on Istio compared to a universal identity control
plane like SPIRE when desiring a richer attestation mechanism, or
when a service needs to authenticate o�-mesh outside of Istio using a
common identity system. An additional advantage of using SPIRE for
workload identities is that it may secure communication not controlled
by a service mesh. For such reasons, organizations sometimes
integrate SPIRE with Istio and use the SPIFFE identity instead of the
built-in Istio identity. IBM published an example located at: IBM/istio-
spire: Istio identity with SPIFFE/SPIRE (see: https://github.com/IBM/istio-
spire).

Service meshes are not direct alternatives to SPIFFE/SPIRE — instead,
they are complementary, with SPIFFE/SPIRE acting as the identity
solution for higher-level abstractions within the mesh.

Service mesh solutions that specifically implement the SPIFFE
Workload API support any software that expects this API to be
available. Service mesh solutions that can deliver SVIDs to their
workloads and support the SPIFFE Federation API can establish trust
automatically between mesh-identified workloads and workloads
running SPIRE or running on di�erent mesh implementations.

Overlay networks simulate a single unified network for services across
multiple platforms. Unlike a service mesh, an overlay network uses

Overlay Networks

https://developer.ibm.com/articles/istio-identity-spiffe-spire/%23why-the-current-istio-mechanism-is-not-enough
https://github.com/IBM/istio-spire

167

standard networking concepts such as IP addresses and routing tables
to connect services. The data is encapsulated and routed across other
networks, creating a virtual network of nodes and logical links built on
top of an existing network.

While the most common overlay networks have no authentication
features, the latest ones do. However, they still don’t attest the identity
of services before allowing them to connect. Typically, they rely on a
pre-existing certificate. SPIFFE is a good fit for providing certificates
for overlay network nodes.

168

Ryan Turner, Software Engineer 2, Uber

Over the last decade, Uber has become the poster child for explosive
growth. As the number of software services and the geographic scale
we operate at grew, so did complexity and risk. To meet the growing
needs, we started building our next-generation infrastructure platform.
Simultaneously, a couple of years back, we saw some early traction
with the open source projects SPIFFE and SPIRE.

We immediately saw the value SPIFFE could bring by enabling us to
strengthen our next-generation infrastructure security posture. We
have rolled out SPIRE at Uber and are now using it to establish trust
across various workload environments using cryptographically
verifiable identities. We started with a few application services and
internal services, such as a workflow engine that spins multiple

10. Practitioners’
Stories

This chapter includes five stories from practitioners who are
engineers at real-world businesses that have deployed SPIFFE and
SPIRE.

Uber: Securing Next-gen and
Legacy Infrastructure Alike with
Cryptographic Identity

169

dynamic workloads to complete specific tasks by accessing data
across the platform. SPIRE provides SPIFFE identities to our workloads
across our application cycle. SPIFFE is used to authenticate services
and helps us avoid misconfigurations that might result in production
issues.

SPIRE is now a key component of Uber's next infrastructure, but we
are also using a side-car approach to retrofit authentication into legacy
infrastructure. While SPIFFE and SPIRE are commonly known to work
in modern, cloud native architectures, we can adapt the projects to
our proprietary legacy stack quickly. SPIRE can provide a critical bridge
of trust within Uber's next-gen and legacy infrastructure and positively
impact internal security and developer e�ciency.

Along our journey, the SPIFFE community has been very supportive in
helping us find solutions. As a result, our engineers have actively been
making code contributions to the projects as well.

SPIFFE gives our security team more confidence in the back-end
infrastructure and less reliance on network-based security controls. As
we deal with financial data and operate across geographic boundaries,
we have to control access to financial and customer data. With SPIRE,
we can provide a strongly attested identity for access control. It helps
us meet these requirements and reduces the burden on audit teams in
the process.

Our development teams at Uber use consistent client libraries to
create AuthZ policies using SPIFFE-based identities. The projects have
enabled development teams to take advantage of workload identity
primitives such as X.509 and JWT without needing a deep

Retrofitting SPIRE into the legacy stack

Security, development, and audit teams are benefiting
from SPIFFE

170

understanding of complex topics such as trust bootstrap, secure
introduction, credential provisioning, or rotation.

Jeremy Krach, Senior Security Engineer, Pinterest

In 2015, Pinterest was having an identity crisis. The infrastructure at
the company was growing in diverse and divergent directions. Each
new system solved authentication — the identity problem — in its
unique way. Developers were spending hours each month in meetings
and security reviews to design, threat-model, and implement their
customized identity solutions or integrate their new service with
disparate identity models of its dependencies. It became clear that the
security team needed to build a common infrastructure to provide
identity in a generic way that could be used across our heterogeneous
services.

The initial draft of this system delegated identity to machines as X.509
certificates based on hostnames. It was heavily used for
secrets management (see Knox (see: https://github.com/pinterest/knox)),
but broader adoption had not yet occurred. As we continued to scale,
in particular with multi-tenant systems such as Kubernetes, we
needed more finely tuned identities that weren’t tied to specific hosts
in our infrastructure, but rather to the identity of the service itself.
Enter SPIFFE.

SPIFFE now provides uniform identity across most of our
infrastructure. We initially started with Kubernetes, as the need was
the most explicit in that multi-tenant environment. Later we moved

Pinterest: Overcoming the Identity
Crisis with SPIFFE

Flattening the complexities with SPIFFE

https://github.com/pinterest/knox

171

the rest of the infrastructure to SPIFFE as its primary form of identity.
As a result, nearly every service at Pinterest has a standardized name
that we can use and there's no obscure conventions or disjointed
schemes. It has helped us unify and standardize our identity
conventions, which aligned with other internal projects to identify
service attributes such as service ownership.

We leverage SPIFFE as the identity in ACLs for secrets management,
mutual TLS service-to-service communication, and even generic
authorization policies (via OPA (see: https://www.openpolicyagent.org/),
another CNCF project). Knox, Pinterest’s open source secrets
management service, uses SPIFFE X.509 identity documents as one
supported authentication method. See our blog post about adding
SPIFFE support into Knox here (see: https://medium.com/pinterest-
engineering/secret-management-in-multi-tenant-environments-debc9236a744).

SPIFFE makes it easier for the security team to write authorization
policies. Developer velocity is significantly better as our engineers don't
have to worry about custom schemes or disparate integrations for
authentication. As we now have a standard way to interpret identity
across our infrastructure it is much easier for billing and ownership
teams to determine who owns a service. Having a strong sense of
identity is also convenient for logging and tracing consistency. We’re
excited about the future of the SPIFFE project and thankful for its
ability to help us solve our identity crisis!

Dev, Sec, and Ops are in harmony again.

https://www.openpolicyagent.org/
https://medium.com/pinterest-engineering/secret-management-in-multi-tenant-environments-debc9236a744

172

Eli Nesterov, Security Engineering Manager, ByteDance

Bytedance, the company behind TikTok, has built and deployed large-
scale internet services worldwide that serve millions of users. Our
infrastructure supporting these services is a mix of private data
centers and public cloud providers. Our applications run on multiple
Kubernetes clusters and dedicated nodes across platforms in the form
of thousands of microservices.

As we grew in scale and size, we had multiple authentication
mechanisms across our platforms using everything from PKI's, JWT-
tokens, Kerberos, OAuth, and custom frameworks. Add numerous
programming languages to these authentication mechanisms, and the
operational complexity and risk increased even more. Operationally it
became complex for our security and operations team to manage
these authentication schemes. In the case of a known vulnerability in
an authentication framework, we could not move swiftly as each
framework had to be dealt with separately. In some cases, they had
code level dependencies, which made it even harder to change. Audit
and compliance across geographic boundaries were challenging as
each platform-specific authentication approach had to be reviewed
and governed separately.

ByteDance: Providing Dial Tone
Authentication for Web-scale
Services

173

A move towards zero trust-based architecture in general, and an e�ort
to improve our developer productivity, forced us to build a unified
identity management plane for our services that would scale to our
growing needs.

It is hard to build an identity system that can work across di�erent
islands of infrastructure or platforms like ours. We could have created
our own, but it would have required a significant amount of e�ort. We
went ahead with SPIRE as it provided the scale and flexibility in
supporting a wide variety of platforms we needed and at web-scale.
Since it o�ers cryptographic identity based on standard X.509
certificates, it helps us easily enable mutual TLS, which, by default,
meets a lot of the compliance requirements. Extensibility and being
open source were another plus as we could easily integrate it with our
existing control plane and data stacks.

With SPIRE we can deploy a consistent, “dial-tone” authentication
across all our platforms. The burden of authentication and security is
now encapsulated from the developers so they can focus on business
or application logic. This has improved our deployment velocity overall.
We are also less likely to get “production errors” due to configuration
issues such as using development credentials in production.

Standardized authentication with SPIRE has also simplified compliance
and audit since we have mutual TLS across trust domains and
platforms. SPIRE also has allowed us to move to a more semi-
decentralized model in terms of identity distribution where the identity
system is local to say a data center. This improves our overall
availability and positions us well for recovery.

Building web-scale PKI with SPIRE

Transparent authentication has simplified operations

174

We are pretty much “future proof” with SPIRE since it can scale and
adapt to meet our growing business needs.

Bobby Samuel, VP AI Engineering, Anthem

Rising healthcare costs in the industry are compelling organizations
like Anthem to rapidly innovate and rethink how we interact with
providers, employer groups, and individuals. As part of this initiative,
we are developing a host of applications that will help us drive costs
down by securely opening healthcare data access. We have started
building the supporting next-generation infrastructure based on cloud
native technologies such as Kubernetes. This new infrastructure will
drive rapid innovation and engage a broader ecosystem of
organizations and developers. An example of this would be our
HealthOS platform. HealthOS will enable third parties to build
HealthApp capabilities to deliver into front-end interfaces, leveraging
an ocean of de-identified health data.

But at nearly every major enterprise, especially healthcare
organizations, someone is trying to get their data with malicious intent.
Protected Healthcare Information (PHI) sells for much higher than
financial information; thus, malicious actors such as hackers and script
kiddies, find healthcare systems and the corresponding health
information highly lucrative. With the adoption of cloud native
architectures, the risk and complexity rise further. The risk of a breach
is even higher since the threat radius increases significantly while
manual security reviews and processes become cloud-scale inhibitors.

Anthem: Securing Cloud Native
Healthcare Applications with
SPIFFE

175

We could not rely on traditional parameter-based security tools and
processes to secure our next-generation applications and
infrastructure. Zero trust, a fine-grained, automated approach to
security, made a lot of sense to us, especially in the future, as we plan
to operate across organizational boundaries and cloud providers.
Identity and authentication for both users and services are among the
zero trust security model’s core principles. Zero trust allows us to rely
less on network-based controls than authenticating every system or
workload. SPIFFE and SPIRE have enabled a foundational
authentication layer for our zero trust security architecture. They allow
each workload to cryptographically prove “who they are” before they
start communicating.

Typically when you think of authentication, you think of usernames,
passwords, and bearer tokens. Unfortunately, these types of
credentials were becoming a risk and source of complexity at Anthem.
They tend to be long-lived, and management or rotation of these was
tricky. We wanted to shift away from this type of secret management
practices in general. Instead of asking a service, “what do you have,”
we want to ask, “who are you.” In short, we wanted to move to
cryptographic identities, such as SPIFFE. We can see additional
benefits of using a strongly attested identity in the future, such as
establishing mutual TLS between workloads and bubbling identity up
to the applications.

Building a foundation for zero trust architecture

A shift away from secret management

176

Security is often considered an inhibitor to deployment by the
development teams. DevOps teams want to deploy new innovative
features faster. However, they have to go through manual tickets,
processes, integrations, and reviews related to security controls. At
Anthem, we doubled down on removing obstacles for our development
teams by making security a function of the infrastructure. With the
adoption of technologies like SPIFFE, we can abstract the complexity
of security controls away from development teams and provide
consistent rules across various platforms. SPIFFE, along with other
zero trust-based technologies, will help us drive our system provision
time from three months to less than two weeks in most scenarios.
Security is becoming an enabler at Anthem with SPIFFE leading the
charge.

Building security as part of the infrastructure with SPIFFE

177

Michael Weissbacher and Mat Byczkowski, Senior Security
Engineers, Square

Square provides a wide variety of financial services. Over its lifetime
the company grew new business units from within the company, such
as Capital and Cash, but also acquired companies like Weebly and
Stitch Labs. Di�erent business units use di�erent technologies and
can operate from di�erent data centers and clouds while still needing
to communicate seamlessly.

Our internally developed service identity system needed to scale
beyond the internal architecture that Square developed for its data
centers. We wanted to expand the system to the cloud and we wanted
to provide an equally secure system that would also serve us well for
years to come. We were ideally looking for an open standard-based
tool that would also seamlessly integrate with Envoy proxy. Both
SPIFFE and SPIRE supported our goals of growth and independent
platforms working with multiple clouds and deployment tools.

Since SPIFFE was based on existing open standards such as X.509
Certificates, it provided a clear upgrade path from how we did service
identity. Envoy is the foundational building block of how apps
communicate at Square. Since SPIRE supports Envoy’s Secrets
Discovery API, getting X509-SVIDs was easy. Envoy has access controls
built-in that can use SPIFFE identities to decide what apps are allowed
to communicate.

Square: Extending Trust to the
Cloud

An open standard that works with popular open source
projects

178

We deployed SPIRE architecture in parallel with the existing service
identity system, then made changes to various internal tooling and
frameworks to support both systems. Next, we integrated SPIRE with
the deployment system to register all services in SPIRE. This meant we
could stress test SPIRE’s frequent SVID rotation. Finally, we used
feature flags to slowly opt-in services to start using SVIDs in their
service-to-service calls.

SPIFFE and SPIRE are enabling our Security Infrastructure team to
provide a critical bridge to securely connect di�erent platforms and
technologies. We’re still in the early migration stage of moving to
SPIRE, but the changes we put in place allowed us to seamlessly
connect our production AWS EKS infrastructure with services deployed
to Square’s data centers. We are now working on an automated
federation between our trust domains, as we have only federated
manually before. We use SPIFFE identity as a standard even for the
custom identity work we do in the company.

We are also really happy to get involved with the SPIFFE community,
everyone has been friendly and helpful during our journey. The
community has provided an added benefit of a good place to bounce
o� system design ideas for zero trust systems in general.

Seamless, secure connectivity across cloud and data
centers

179

Access Control: A method of regulating access to resources. It includes
both authentication and authorization.

ACLs (Access Control Lists): A set of rules that specifies which users
or systems are granted access to objects, as well as what operations
are allowed on given objects.

Active Directory: A directory service developed by Microsoft for
Windows domain networks.

Agile: A set of software development practices that helps deliver
applications faster through iterative processes instead of traditional
waterfall processes.

API (Application Programming Interface): A set of functions that a
service or application provides to be used by other services as an
abstraction layer.

API Token: A general term that refers to a unique identifier of a service
used for authenticating or accessing an API.

Attestation: Asserting certain properties of an entity. In the context of
SPIRE, is referred to as the process of asserting properties of a Node
or Workload.

Auditing: A set of procedures for inspecting and examining a process
or system, to ensure compliance to requirements.

Authentication: The process of verifying the identity of a human user
or a system. It’s focused on answering “Who are you?”

Glossary

180

Authorization: The process of determining the permissions a human
user or a system has on a resource. It’s focused on answering “What
can you access?

Blast Radius: The reach that a compromised secret or faulty
configuration problem might have.

BSD: Berkeley Software Distribution.

Certificate Authority (CA): An entity that issues digital certificates.

Certificate Transparency: A internet security standard and open source
framework for monitoring and auditing digital certificates.

CI/CD (Continuous Integration/Continuous Deployment): The set of
tools and practices that enable development teams to make frequent
changes to applications and systems introducing automation into the
development pipelines.

CLI: Command Line Interface; a program that accepts text input to
execute operating system functions.

Cloud (also Cloud computing): A model of on-demand availability of
computing power and storage that allows the users to consume
resources, based on their needs, from a pool of resources provided by
a vendor. In the process of doing so, this allows the delegation of
certain management responsibilities to the vendor.

Cloud-aware or Cloud native: An application designed to run on a
cloud platform. Cloud native design patterns can scale horizontally,
easily migratable, and resilient in distributed systems environments.

Common Name (CN): A field in certificates generally used to specify
the host or server identity.

181

Container: A unit of software that packages up code and all its
dependencies so the application runs quickly and reliably from one
computing environment to another.

Credential provisioning: The process of generating and/or issuing
credentials to a service or a system.

Cryptographic identities: A piece of data that an entity can use to
prove its identity using a cryptographic authentication protocol, e.g. An
X.509 certificate.

Data store: A repository for storing and managing collections of data.

Denial of Service (DoS): A type of cyber-attack in which the attacker
tries to make a service or network unavailable for its intended users.

DevOps: Combination of tools and practices that enable organizations
to deliver applications at a high velocity, empowering teams to own the
whole lifecycle of a service from Development to Operations.

DNS (Domain Name Service): A hierarchical and decentralized naming
system for computers, services, or other resources.

Encryption: The process of encoding information, converting an original
plain-text into another form known as ciphertext, through the use of
algorithms to protect the confidentiality of the information from
unauthorized parties.

Federation: The union of self-governed domains. When two domains
are federated it means a user or service can authenticate to one
domain and then access resources in other domains without having to
go through domain-specific authentication again.

Firewall: A hardware/software appliance that governs network tra�c.
Most commonly used to create allow/deny rules to manage
connections between entities.

182

Four eyes principle: The mechanism that requires that the actions
done by an individual must be reviewed by a second, independent
individual.

GDPR (General Data Protection Regulation): Regulation in the European
Union covering data protection and privacy.

gRPC: A modern open source high-performance Remote Procedure Call
(RPC) framework developed by Google.

Hardened: The state of a system after being put through a set of steps
to strengthen security. This can include several steps such as patching
and configuration.

Hardware Security Module (HSM): A dedicated cryptographic processor
designed to manage and safeguard sensitive keys, that provides
encryption and decryption functions for digital signatures and other
cryptographic functions.

High Availability: The characteristic of systems that are resilient to
failure, providing close to 100% uptime of service. This is achieved
through the use of software and hardware redundancy making them
available despite failures.

HTTPS: Hypertext Transfer Protocol Secure is an extension of the HTTP
protocol used for secure communication. It uses TLS to establish
secure connections.

Human-in-the-loop systems: A system that requires humans to make
decisions and actions, e.g. manual workflow or approvals.

Interoperability: The ability of a system to interact with another
system even if it is deployed on a di�erent platform or developed in a
di�erent language.

183

IP (Internet Protocol): Protocol, or set of rules, for sending data, from
one computer to another on a network.

IPC (Inter-process Communication): A mechanism provided by the
operating system to allow processes to communicate with each other.

JWT (JSON Web Tokens): An open and industry-standard (RFC 7519)
method for representing claims securely between two parties.

JWT-SVID: The token-based SVID in the SPIFFE specification, aimed at
providing identity assertion across L7 boundaries. JWT-SVIDs are
standard JWTs tokens with some extra restrictions applied.

Kerberos: An authentication protocol based on tickets that allow
computers to communicate on an untrusted network to prove their
identity to one another in a secure way.

Kernel: The central part of an operating system, which manages the
memory, CPU, and device operations.

Key Management Service (KMS): A system that manages cryptographic
keys. It deals with generating, exchange, storing, and revocation of
keys.

Kill chain: A concept that refers to the di�erent phases of a cyber
attack. It is a series of steps an attack takes to penetrate a system.

Kubernetes: An orchestration system for Containers.

L3/L4: The network (L3) and transport (L4) layers of the OSI
networking model.

L7: The application layer of the OSI networking model.

Lead time reduction: The time taken to develop, test, and deploy an
application into production.

184

Legacy: Technology and infrastructure which is dated and is generally
hard to maintain, or make work with modern technology.

Linux: A family of open source operating systems based on the Linux
kernel.

Logging: The process of keeping a register of the events that happen
during the functioning of a system.

Man-in-the-middle: An attack where an attacker secretly intercepts
the communication between two parties, stealing or altering sensitive
information.

Memory Leak: This occurs when the memory that is no longer needed
is not released.

Metering: The process of collecting usage information about services
or microservice in terms of resource utilization, usually to enforce a
quota or for resource management.

Merkle Tree: A hash-based tree structure in which each leaf node is a
hash of a block of data, and each non-leaf node is a hash of its
children. Merkle trees are used in distributed systems for e�cient data
verification.

Microservices: A modern architectural pattern in which applications
are split into distinct, independently managed services for better
scalability, re-usability, and rapid deployment.

Mint SVIDs: To create a new cryptographically verifiable identity
document.

Multi-cloud: A system architecture that uses multiple cloud computing
and storage vendors.

185

Multiregion: A system deployment that crosses multiple regions in a
cloud platform.

Mutual TLS (mTLS): Cryptographic protocol that ensures that tra�c is
both secure and trusted in both directions between a client and server.

NAT (Network Address Translation): A method for converting IP
addresses across di�erent network address spaces. The typical use
case allows multiple devices to access the internet using a single
public IP address.

Node/Worker: A logical or physical entity that runs computational
workloads in a computer systems context. A Node is the underlying
compute system that a workload runs on.

Observability: The ability to infer a system's internal state based on its
external outputs.

OAuth: OAuth is an open standard for access delegation, commonly
used as a way for internet users to grant websites or applications
access to their information on other websites but without giving them
the passwords.

OIDC (OpenID Connect): Identity layer built on top of OAuth 2.0.

OpenStack: An orchestration system for Virtual Machines.

OpenSSH: A set of tools used to secure network communications,
based on the Secure Shell protocol (SSH).

OWASP (Open Web Application Security Project): A non-profit
foundation that is focused on improving the security of software. It
provides tools, resources, education, and training for developers and
security practitioners.

186

Perimeter-based security: A security approach that establishes a
strong perimeter, e.g. firewall, and then trusts activities or entities
within that perimeter by default.

PKI (Public Key Infrastructure) Set of policies, procedures, and tools
used to create, manage, and distribute digital certificates.

Proxy: An application or appliance that sits in front of an application
and intercepts connections being made to the application.

Public-key cryptography (also asymmetric cryptography):
Cryptographic system that uses pairs of keys (private keys and public
keys) created with special mathematical properties; one key to encrypt
a piece of information and then the other key to decode it. This type of
cryptography is used for creating digital certificates.

Remote Code Execution (RCE): A security vulnerability that allows an
attacker to execute code from a remote server.

Root of trust: A source in which another trust is built on. Usually
referring to a cryptographic mechanism provided by hardware or by a
trusted entity.

SaaS (Software as a Service): A model of software consumption where
instead of software being bought and run by a user, the software is
hosted and maintained by a service provider.

Scheme: When relating to identity, a convention that defines how
identity can be parsed and understood.

Secure introduction: The challenge of getting the first secret from a
secrets distribution system.

Security group: In the context of AWS, a Security Group acts as a
virtual firewall to control incoming and outgoing tra�c.

187

Selector: A selector is an attribute or a property of a software entity
that can be used to assert who that entity is. It can be a Node Selector
or a Workload Selector.

Serverless: A cloud computing execution model that allows developers
to deploy code without worrying about the underlying infrastructure
and resource allocation.

Service mesh: A configurable infrastructure layer used for facilitating
and managing communication between services,

Side-car: A process that runs alongside a workload to provide
additional functionality to a system with minimal intrusion.

Signing: The addition of a digital signature for verifying the authenticity
of a message or document.

SIEM (Security Information and Event Management): A concept that
enables organizations to collect and analyze data from applications,
systems, and networks to detect potential malicious activities or
attacks.

SLA (Service Level Agreements): An agreement between a service
provider and client on the various aspects of a service such as quality
and availability. SLO (Service Level Objective) is an agreement with the
SLA about a particular metric.

SOX (Sarbanes-Oxley Act): An act passed in the United States to
protect shareholders and the general public from accounting errors
and fraudulent practices, resulting in additional compliance
requirements that enterprises need to meet.

SPIFFE ID: The string that uniquely identifies a workload or a service,
e.g. spi�e://ukinc.com/billing/payments

188

SSH (Secure SHell): Protocol that allows encrypted connections
between a client and a server.

SAN (Subject Alternative Name): Alternate or additional hostnames to
be protected by a single SSL or certificate.

SVID (SPIFFE Verifiable Identity Document): A document with which a
workload proves its identity. It includes a SPIFFE ID in two currently
supported formats: an X.509 certificate or a JWT token.

Telemetry: Automated process of collecting data points and
measurements for monitoring the functioning of a system.

TLS (Transport Layer Security): Cryptographic protocol that enables
secure communications between two services by authenticating the
identity of a service over a computer network. It is typically used by
websites for secure communication between their web servers and
web browsers.

URI (Uniform Resource Identifier): A string that unambiguously
identifies a resource following a standard set of syntax rules.

Trusted Platform Module (TPM): A piece of hardware that can securely
store cryptographic material.

Trust bootstrap: Establishing trust on a service or system.

Trust Domain: Corresponds to the trust root of a system, which could
be an individual, organization, environment, or department. A SPIFFE
trust domain is an identity namespace that is backed by an issuing
authority.

Web Public Key Infrastructure (Web PKI): The set of systems and
procedures to enable confidentiality, integrity, and authenticity to
communications between Web browsers and Web servers.

189

Workload: A workload is a single piece of software, deployed with a
particular configuration for a single purpose that can consist of
multiple running instances, where all of them perform the same task.
The term workload may include a wide range of di�erent definitions of
a software system, including:

Windows: An operating system developed by Microsoft

X.509: A widely used standard format for public-key certificates. These
certificates are used in many internet protocols, including TLS/SSL.

X509-SVID: The X.509 representation of a SPIFFE Verifiable Identity
Document (SVID).

Zero trust: A security concept centered on the idea that organizations
should not automatically trust anything based on whether a service is
running inside or outside a perimeter and instead must verify
everything trying to connect to its systems before granting access.

A webserver running a Python web application, running on a
cluster of virtual machines with a load-balancer in front of it.

•

A MySQL database instance.•
A worker program processing items in a queue.•
A collection of independently deployed systems that work
together, such as a web application that uses a database service.
The web application and database could also individually be
considered workloads.

•

190

History and Motivation for SPIFFE

1. Building Microservices, O'Reilly Media, Inc., 2015.

2. Turtles All the Way Down: Storing Secrets in the Cloud and the Data Center,
Daniel Somerfield, AppSecUSA 2015,
https://appsecusa2015.sched.com/event/621130a7c1090d129134ab6fb1c3cba4

Benefits

3. X.509 was part of the X.500 telecoms standard, which proposed a global
directory, in which users could look up data for humans and servers by name and
obtain their certificates. No other part of the X.500 standard reached widespread
adoption.

4. See https://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf for more information.

5. A newer extension called X.509 Name Constraints (see:
https://tools.ietf.org/html/rfc5280%23page-40) allows adding restrictions to
certificate authorities so they can’t issue certificates for outside organizations,
but it is not widely adopted.

6. How does the service communicate securely to the Certificate Authority?
Since the Certificate Authority’s certificate is itself widely known, anyone can
establish a secure connection to it.

7. For an introduction to CRLs alongside some of the potential problems, see
“Can we eliminate certificate revocation lists? (see:
https://people.csail.mit.edu/rivest/pubs/Riv98b.pdf)” by Ronald Rivest

8. An identity does not grant authorization, rather the association of particular
attributes about the identity (in a separate store) that allow a decision point or
enforcement point to determine if the entity is authorized for access.

Introduction to SPIFFE and SPIRE concepts

9. Lack of authentication on this API is an important distinction as it is one
aspect which allows us to solve the bottom turtle problem. SPIFFE
implementations are still responsible for positively identifying callers of the API,

Notes

https://appsecusa2015.sched.com/event/621130a7c1090d129134ab6fb1c3cba4
https://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
https://tools.ietf.org/html/rfc5280%23page-40
https://people.csail.mit.edu/rivest/pubs/Riv98b.pdf

191

but they must do so in a manner that denies in-band credentials from being
passed from the workloads

10. Information provided alongside the identity may include things such as
intermediate CA certificates, private keys for proving the identity, and public keys
for validating SVIDs.

11. The identity itself is inclusive of both the trust domain and name portion.
 The name portion may be referred to as the ‘identity’ but is considered
incomplete without the trust domain to make it unique.

Before You Start

12. An excellent read on adoption actors: Technology Adoption Curve: Traits of
Adopters at Each Stage of the Lifecycle (see:
https://academy.whatfix.com/technology-adoption-curve)

Designing a SPIRE Deployment

13. A cluster constitutes more than one identically configured server.

https://academy.whatfix.com/technology-adoption-curve

192

Before SPIFFE and SPIRE, organizations faced an immense challenge:
adopting modern infrastructure practices caused their old security
model to break down. Perimeters became increasingly porous and at
the same time network properties like IP addresses became useless
for access control.

SPIFFE and SPIRE help organizations rise to that challenge by providing
unique, cryptographically verifiable identities for all of their services.
Once they have identities, services can implement higher-level security
functionality including authentication, encryption, observability, and
authorization.

Providing secure identities to services first requires a secure way to
determine the identities of the servers, cloud instances, and clusters
that they run on. That is the bottom turtle problem we referenced in
the prologue. SPIFFE and SPIRE solve the bottom turtle problem by
leveraging multiple factors to provide a strong proof of identity.

SPIFFE and SPIRE are open source projects and could always use more
help! Visit the web site at spi�e.io and join the SPIFFE Slack
workspace to engage with the growing community of users.

Trust in Zero.

Epilogue

https://spiffe.io/

193

194

